Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

4^{2}k^{2}-4\times 6\left(k^{2}-1\right)=0
Expand \left(4k\right)^{2}.
16k^{2}-4\times 6\left(k^{2}-1\right)=0
Calculate 4 to the power of 2 and get 16.
16k^{2}-24\left(k^{2}-1\right)=0
Multiply 4 and 6 to get 24.
16k^{2}-24k^{2}+24=0
Use the distributive property to multiply -24 by k^{2}-1.
-8k^{2}+24=0
Combine 16k^{2} and -24k^{2} to get -8k^{2}.
-8k^{2}=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
k^{2}=\frac{-24}{-8}
Divide both sides by -8.
k^{2}=3
Divide -24 by -8 to get 3.
k=\sqrt{3} k=-\sqrt{3}
Take the square root of both sides of the equation.
4^{2}k^{2}-4\times 6\left(k^{2}-1\right)=0
Expand \left(4k\right)^{2}.
16k^{2}-4\times 6\left(k^{2}-1\right)=0
Calculate 4 to the power of 2 and get 16.
16k^{2}-24\left(k^{2}-1\right)=0
Multiply 4 and 6 to get 24.
16k^{2}-24k^{2}+24=0
Use the distributive property to multiply -24 by k^{2}-1.
-8k^{2}+24=0
Combine 16k^{2} and -24k^{2} to get -8k^{2}.
k=\frac{0±\sqrt{0^{2}-4\left(-8\right)\times 24}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 0 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\left(-8\right)\times 24}}{2\left(-8\right)}
Square 0.
k=\frac{0±\sqrt{32\times 24}}{2\left(-8\right)}
Multiply -4 times -8.
k=\frac{0±\sqrt{768}}{2\left(-8\right)}
Multiply 32 times 24.
k=\frac{0±16\sqrt{3}}{2\left(-8\right)}
Take the square root of 768.
k=\frac{0±16\sqrt{3}}{-16}
Multiply 2 times -8.
k=-\sqrt{3}
Now solve the equation k=\frac{0±16\sqrt{3}}{-16} when ± is plus.
k=\sqrt{3}
Now solve the equation k=\frac{0±16\sqrt{3}}{-16} when ± is minus.
k=-\sqrt{3} k=\sqrt{3}
The equation is now solved.