Solve for k
k=\sqrt{3}\approx 1.732050808
k=-\sqrt{3}\approx -1.732050808
Share
Copied to clipboard
4^{2}k^{2}-4\times 6\left(k^{2}-1\right)=0
Expand \left(4k\right)^{2}.
16k^{2}-4\times 6\left(k^{2}-1\right)=0
Calculate 4 to the power of 2 and get 16.
16k^{2}-24\left(k^{2}-1\right)=0
Multiply 4 and 6 to get 24.
16k^{2}-24k^{2}+24=0
Use the distributive property to multiply -24 by k^{2}-1.
-8k^{2}+24=0
Combine 16k^{2} and -24k^{2} to get -8k^{2}.
-8k^{2}=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
k^{2}=\frac{-24}{-8}
Divide both sides by -8.
k^{2}=3
Divide -24 by -8 to get 3.
k=\sqrt{3} k=-\sqrt{3}
Take the square root of both sides of the equation.
4^{2}k^{2}-4\times 6\left(k^{2}-1\right)=0
Expand \left(4k\right)^{2}.
16k^{2}-4\times 6\left(k^{2}-1\right)=0
Calculate 4 to the power of 2 and get 16.
16k^{2}-24\left(k^{2}-1\right)=0
Multiply 4 and 6 to get 24.
16k^{2}-24k^{2}+24=0
Use the distributive property to multiply -24 by k^{2}-1.
-8k^{2}+24=0
Combine 16k^{2} and -24k^{2} to get -8k^{2}.
k=\frac{0±\sqrt{0^{2}-4\left(-8\right)\times 24}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 0 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\left(-8\right)\times 24}}{2\left(-8\right)}
Square 0.
k=\frac{0±\sqrt{32\times 24}}{2\left(-8\right)}
Multiply -4 times -8.
k=\frac{0±\sqrt{768}}{2\left(-8\right)}
Multiply 32 times 24.
k=\frac{0±16\sqrt{3}}{2\left(-8\right)}
Take the square root of 768.
k=\frac{0±16\sqrt{3}}{-16}
Multiply 2 times -8.
k=-\sqrt{3}
Now solve the equation k=\frac{0±16\sqrt{3}}{-16} when ± is plus.
k=\sqrt{3}
Now solve the equation k=\frac{0±16\sqrt{3}}{-16} when ± is minus.
k=-\sqrt{3} k=\sqrt{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}