( 4 d e ^ { 3 } ) ^ { 2 } \div 9 d ^ { 4 } e =
Evaluate
\frac{16e^{7}d^{6}}{9}
Expand
\frac{16e^{7}d^{6}}{9}
Share
Copied to clipboard
\frac{4^{2}d^{2}\left(e^{3}\right)^{2}}{9}d^{4}e
Expand \left(4de^{3}\right)^{2}.
\frac{4^{2}d^{2}e^{6}}{9}d^{4}e
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{16d^{2}e^{6}}{9}d^{4}e
Calculate 4 to the power of 2 and get 16.
\frac{16d^{2}e^{6}d^{4}}{9}e
Express \frac{16d^{2}e^{6}}{9}d^{4} as a single fraction.
\frac{16d^{2}e^{6}d^{4}e}{9}
Express \frac{16d^{2}e^{6}d^{4}}{9}e as a single fraction.
\frac{16d^{6}e^{6}e}{9}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
\frac{16d^{6}e^{7}}{9}
To multiply powers of the same base, add their exponents. Add 6 and 1 to get 7.
\frac{4^{2}d^{2}\left(e^{3}\right)^{2}}{9}d^{4}e
Expand \left(4de^{3}\right)^{2}.
\frac{4^{2}d^{2}e^{6}}{9}d^{4}e
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{16d^{2}e^{6}}{9}d^{4}e
Calculate 4 to the power of 2 and get 16.
\frac{16d^{2}e^{6}d^{4}}{9}e
Express \frac{16d^{2}e^{6}}{9}d^{4} as a single fraction.
\frac{16d^{2}e^{6}d^{4}e}{9}
Express \frac{16d^{2}e^{6}d^{4}}{9}e as a single fraction.
\frac{16d^{6}e^{6}e}{9}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
\frac{16d^{6}e^{7}}{9}
To multiply powers of the same base, add their exponents. Add 6 and 1 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}