Evaluate
-4b\left(2b-5\right)
Expand
20b-8b^{2}
Share
Copied to clipboard
\frac{\left(4b^{2}-10b\right)\times 2}{-1}
Divide 4b^{2}-10b by -\frac{1}{2} by multiplying 4b^{2}-10b by the reciprocal of -\frac{1}{2}.
-\left(4b^{2}-10b\right)\times 2
Anything divided by -1 gives its opposite.
-\left(8b^{2}-20b\right)
Use the distributive property to multiply 4b^{2}-10b by 2.
-8b^{2}+20b
To find the opposite of 8b^{2}-20b, find the opposite of each term.
\frac{\left(4b^{2}-10b\right)\times 2}{-1}
Divide 4b^{2}-10b by -\frac{1}{2} by multiplying 4b^{2}-10b by the reciprocal of -\frac{1}{2}.
-\left(4b^{2}-10b\right)\times 2
Anything divided by -1 gives its opposite.
-\left(8b^{2}-20b\right)
Use the distributive property to multiply 4b^{2}-10b by 2.
-8b^{2}+20b
To find the opposite of 8b^{2}-20b, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}