Evaluate
\frac{a^{3}}{144b^{7}}
Expand
\frac{a^{3}}{144b^{7}}
Share
Copied to clipboard
\frac{4^{-1}a^{-1}b^{-1}}{\left(\frac{a^{2}b^{-3}}{6}\right)^{-2}}
Expand \left(4ab\right)^{-1}.
\frac{\frac{1}{4}a^{-1}b^{-1}}{\left(\frac{a^{2}b^{-3}}{6}\right)^{-2}}
Calculate 4 to the power of -1 and get \frac{1}{4}.
\frac{\frac{1}{4}a^{-1}b^{-1}}{\frac{\left(a^{2}b^{-3}\right)^{-2}}{6^{-2}}}
To raise \frac{a^{2}b^{-3}}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{1}{4}a^{-1}b^{-1}\times 6^{-2}}{\left(a^{2}b^{-3}\right)^{-2}}
Divide \frac{1}{4}a^{-1}b^{-1} by \frac{\left(a^{2}b^{-3}\right)^{-2}}{6^{-2}} by multiplying \frac{1}{4}a^{-1}b^{-1} by the reciprocal of \frac{\left(a^{2}b^{-3}\right)^{-2}}{6^{-2}}.
\frac{\frac{1}{4}a^{-1}b^{-1}\times \frac{1}{36}}{\left(a^{2}b^{-3}\right)^{-2}}
Calculate 6 to the power of -2 and get \frac{1}{36}.
\frac{\frac{1}{144}a^{-1}b^{-1}}{\left(a^{2}b^{-3}\right)^{-2}}
Multiply \frac{1}{4} and \frac{1}{36} to get \frac{1}{144}.
\frac{\frac{1}{144}a^{-1}b^{-1}}{\left(a^{2}\right)^{-2}\left(b^{-3}\right)^{-2}}
Expand \left(a^{2}b^{-3}\right)^{-2}.
\frac{\frac{1}{144}a^{-1}b^{-1}}{a^{-4}\left(b^{-3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\frac{1}{144}a^{-1}b^{-1}}{a^{-4}b^{6}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{\frac{1}{144}\times \frac{1}{b}a^{3}}{b^{6}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{1}{144}a^{3}}{b^{7}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{4^{-1}a^{-1}b^{-1}}{\left(\frac{a^{2}b^{-3}}{6}\right)^{-2}}
Expand \left(4ab\right)^{-1}.
\frac{\frac{1}{4}a^{-1}b^{-1}}{\left(\frac{a^{2}b^{-3}}{6}\right)^{-2}}
Calculate 4 to the power of -1 and get \frac{1}{4}.
\frac{\frac{1}{4}a^{-1}b^{-1}}{\frac{\left(a^{2}b^{-3}\right)^{-2}}{6^{-2}}}
To raise \frac{a^{2}b^{-3}}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{1}{4}a^{-1}b^{-1}\times 6^{-2}}{\left(a^{2}b^{-3}\right)^{-2}}
Divide \frac{1}{4}a^{-1}b^{-1} by \frac{\left(a^{2}b^{-3}\right)^{-2}}{6^{-2}} by multiplying \frac{1}{4}a^{-1}b^{-1} by the reciprocal of \frac{\left(a^{2}b^{-3}\right)^{-2}}{6^{-2}}.
\frac{\frac{1}{4}a^{-1}b^{-1}\times \frac{1}{36}}{\left(a^{2}b^{-3}\right)^{-2}}
Calculate 6 to the power of -2 and get \frac{1}{36}.
\frac{\frac{1}{144}a^{-1}b^{-1}}{\left(a^{2}b^{-3}\right)^{-2}}
Multiply \frac{1}{4} and \frac{1}{36} to get \frac{1}{144}.
\frac{\frac{1}{144}a^{-1}b^{-1}}{\left(a^{2}\right)^{-2}\left(b^{-3}\right)^{-2}}
Expand \left(a^{2}b^{-3}\right)^{-2}.
\frac{\frac{1}{144}a^{-1}b^{-1}}{a^{-4}\left(b^{-3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\frac{1}{144}a^{-1}b^{-1}}{a^{-4}b^{6}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{\frac{1}{144}\times \frac{1}{b}a^{3}}{b^{6}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{1}{144}a^{3}}{b^{7}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}