Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{4^{-1}a^{-1}b^{-1}}{\left(\frac{a^{2}b^{-3}}{6}\right)^{-2}}
Expand \left(4ab\right)^{-1}.
\frac{\frac{1}{4}a^{-1}b^{-1}}{\left(\frac{a^{2}b^{-3}}{6}\right)^{-2}}
Calculate 4 to the power of -1 and get \frac{1}{4}.
\frac{\frac{1}{4}a^{-1}b^{-1}}{\frac{\left(a^{2}b^{-3}\right)^{-2}}{6^{-2}}}
To raise \frac{a^{2}b^{-3}}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{1}{4}a^{-1}b^{-1}\times 6^{-2}}{\left(a^{2}b^{-3}\right)^{-2}}
Divide \frac{1}{4}a^{-1}b^{-1} by \frac{\left(a^{2}b^{-3}\right)^{-2}}{6^{-2}} by multiplying \frac{1}{4}a^{-1}b^{-1} by the reciprocal of \frac{\left(a^{2}b^{-3}\right)^{-2}}{6^{-2}}.
\frac{\frac{1}{4}a^{-1}b^{-1}\times \frac{1}{36}}{\left(a^{2}b^{-3}\right)^{-2}}
Calculate 6 to the power of -2 and get \frac{1}{36}.
\frac{\frac{1}{144}a^{-1}b^{-1}}{\left(a^{2}b^{-3}\right)^{-2}}
Multiply \frac{1}{4} and \frac{1}{36} to get \frac{1}{144}.
\frac{\frac{1}{144}a^{-1}b^{-1}}{\left(a^{2}\right)^{-2}\left(b^{-3}\right)^{-2}}
Expand \left(a^{2}b^{-3}\right)^{-2}.
\frac{\frac{1}{144}a^{-1}b^{-1}}{a^{-4}\left(b^{-3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\frac{1}{144}a^{-1}b^{-1}}{a^{-4}b^{6}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{\frac{1}{144}\times \frac{1}{b}a^{3}}{b^{6}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{1}{144}a^{3}}{b^{7}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{4^{-1}a^{-1}b^{-1}}{\left(\frac{a^{2}b^{-3}}{6}\right)^{-2}}
Expand \left(4ab\right)^{-1}.
\frac{\frac{1}{4}a^{-1}b^{-1}}{\left(\frac{a^{2}b^{-3}}{6}\right)^{-2}}
Calculate 4 to the power of -1 and get \frac{1}{4}.
\frac{\frac{1}{4}a^{-1}b^{-1}}{\frac{\left(a^{2}b^{-3}\right)^{-2}}{6^{-2}}}
To raise \frac{a^{2}b^{-3}}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{1}{4}a^{-1}b^{-1}\times 6^{-2}}{\left(a^{2}b^{-3}\right)^{-2}}
Divide \frac{1}{4}a^{-1}b^{-1} by \frac{\left(a^{2}b^{-3}\right)^{-2}}{6^{-2}} by multiplying \frac{1}{4}a^{-1}b^{-1} by the reciprocal of \frac{\left(a^{2}b^{-3}\right)^{-2}}{6^{-2}}.
\frac{\frac{1}{4}a^{-1}b^{-1}\times \frac{1}{36}}{\left(a^{2}b^{-3}\right)^{-2}}
Calculate 6 to the power of -2 and get \frac{1}{36}.
\frac{\frac{1}{144}a^{-1}b^{-1}}{\left(a^{2}b^{-3}\right)^{-2}}
Multiply \frac{1}{4} and \frac{1}{36} to get \frac{1}{144}.
\frac{\frac{1}{144}a^{-1}b^{-1}}{\left(a^{2}\right)^{-2}\left(b^{-3}\right)^{-2}}
Expand \left(a^{2}b^{-3}\right)^{-2}.
\frac{\frac{1}{144}a^{-1}b^{-1}}{a^{-4}\left(b^{-3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\frac{1}{144}a^{-1}b^{-1}}{a^{-4}b^{6}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{\frac{1}{144}\times \frac{1}{b}a^{3}}{b^{6}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{1}{144}a^{3}}{b^{7}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.