Evaluate
3a\left(2a-3b\right)
Expand
6a^{2}-9ab
Share
Copied to clipboard
8a^{2}-12ab-2ba+3b^{2}-\left(-a+b\right)\left(3b-2a\right)
Apply the distributive property by multiplying each term of 4a-b by each term of 2a-3b.
8a^{2}-14ab+3b^{2}-\left(-a+b\right)\left(3b-2a\right)
Combine -12ab and -2ba to get -14ab.
8a^{2}-14ab+3b^{2}-\left(3\left(-a\right)b-2\left(-a\right)a+3b^{2}-2ba\right)
Apply the distributive property by multiplying each term of -a+b by each term of 3b-2a.
8a^{2}-14ab+3b^{2}-\left(3\left(-a\right)b+2aa+3b^{2}-2ba\right)
Multiply -2 and -1 to get 2.
8a^{2}-14ab+3b^{2}-\left(3\left(-a\right)b+2a^{2}+3b^{2}-2ba\right)
Multiply a and a to get a^{2}.
8a^{2}-14ab+3b^{2}-3\left(-a\right)b-2a^{2}-3b^{2}-\left(-2ba\right)
To find the opposite of 3\left(-a\right)b+2a^{2}+3b^{2}-2ba, find the opposite of each term.
8a^{2}-14ab+3b^{2}+3ab-2a^{2}-3b^{2}-\left(-2ba\right)
Multiply -3 and -1 to get 3.
8a^{2}-11ab+3b^{2}-2a^{2}-3b^{2}-\left(-2ba\right)
Combine -14ab and 3ab to get -11ab.
6a^{2}-11ab+3b^{2}-3b^{2}-\left(-2ba\right)
Combine 8a^{2} and -2a^{2} to get 6a^{2}.
6a^{2}-11ab-\left(-2ba\right)
Combine 3b^{2} and -3b^{2} to get 0.
6a^{2}-11ab+2ba
The opposite of -2ba is 2ba.
6a^{2}-9ab
Combine -11ab and 2ba to get -9ab.
8a^{2}-12ab-2ba+3b^{2}-\left(-a+b\right)\left(3b-2a\right)
Apply the distributive property by multiplying each term of 4a-b by each term of 2a-3b.
8a^{2}-14ab+3b^{2}-\left(-a+b\right)\left(3b-2a\right)
Combine -12ab and -2ba to get -14ab.
8a^{2}-14ab+3b^{2}-\left(3\left(-a\right)b-2\left(-a\right)a+3b^{2}-2ba\right)
Apply the distributive property by multiplying each term of -a+b by each term of 3b-2a.
8a^{2}-14ab+3b^{2}-\left(3\left(-a\right)b+2aa+3b^{2}-2ba\right)
Multiply -2 and -1 to get 2.
8a^{2}-14ab+3b^{2}-\left(3\left(-a\right)b+2a^{2}+3b^{2}-2ba\right)
Multiply a and a to get a^{2}.
8a^{2}-14ab+3b^{2}-3\left(-a\right)b-2a^{2}-3b^{2}-\left(-2ba\right)
To find the opposite of 3\left(-a\right)b+2a^{2}+3b^{2}-2ba, find the opposite of each term.
8a^{2}-14ab+3b^{2}+3ab-2a^{2}-3b^{2}-\left(-2ba\right)
Multiply -3 and -1 to get 3.
8a^{2}-11ab+3b^{2}-2a^{2}-3b^{2}-\left(-2ba\right)
Combine -14ab and 3ab to get -11ab.
6a^{2}-11ab+3b^{2}-3b^{2}-\left(-2ba\right)
Combine 8a^{2} and -2a^{2} to get 6a^{2}.
6a^{2}-11ab-\left(-2ba\right)
Combine 3b^{2} and -3b^{2} to get 0.
6a^{2}-11ab+2ba
The opposite of -2ba is 2ba.
6a^{2}-9ab
Combine -11ab and 2ba to get -9ab.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}