Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(4a\right)^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Consider \left(4a-5b\right)\left(4a+5b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4^{2}a^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Expand \left(4a\right)^{2}.
16a^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Calculate 4 to the power of 2 and get 16.
16a^{2}-5^{2}b^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Expand \left(5b\right)^{2}.
16a^{2}-25b^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Calculate 5 to the power of 2 and get 25.
16a^{2}-25b^{2}-\left(16a^{2}-4ab-6b^{2}\right)+\left(-5b\right)^{2}
Use the distributive property to multiply 4a+2b by 4a-3b and combine like terms.
16a^{2}-25b^{2}-16a^{2}+4ab+6b^{2}+\left(-5b\right)^{2}
To find the opposite of 16a^{2}-4ab-6b^{2}, find the opposite of each term.
-25b^{2}+4ab+6b^{2}+\left(-5b\right)^{2}
Combine 16a^{2} and -16a^{2} to get 0.
-19b^{2}+4ab+\left(-5b\right)^{2}
Combine -25b^{2} and 6b^{2} to get -19b^{2}.
-19b^{2}+4ab+\left(-5\right)^{2}b^{2}
Expand \left(-5b\right)^{2}.
-19b^{2}+4ab+25b^{2}
Calculate -5 to the power of 2 and get 25.
6b^{2}+4ab
Combine -19b^{2} and 25b^{2} to get 6b^{2}.
\left(4a\right)^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Consider \left(4a-5b\right)\left(4a+5b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4^{2}a^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Expand \left(4a\right)^{2}.
16a^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Calculate 4 to the power of 2 and get 16.
16a^{2}-5^{2}b^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Expand \left(5b\right)^{2}.
16a^{2}-25b^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Calculate 5 to the power of 2 and get 25.
16a^{2}-25b^{2}-\left(16a^{2}-4ab-6b^{2}\right)+\left(-5b\right)^{2}
Use the distributive property to multiply 4a+2b by 4a-3b and combine like terms.
16a^{2}-25b^{2}-16a^{2}+4ab+6b^{2}+\left(-5b\right)^{2}
To find the opposite of 16a^{2}-4ab-6b^{2}, find the opposite of each term.
-25b^{2}+4ab+6b^{2}+\left(-5b\right)^{2}
Combine 16a^{2} and -16a^{2} to get 0.
-19b^{2}+4ab+\left(-5b\right)^{2}
Combine -25b^{2} and 6b^{2} to get -19b^{2}.
-19b^{2}+4ab+\left(-5\right)^{2}b^{2}
Expand \left(-5b\right)^{2}.
-19b^{2}+4ab+25b^{2}
Calculate -5 to the power of 2 and get 25.
6b^{2}+4ab
Combine -19b^{2} and 25b^{2} to get 6b^{2}.