Evaluate
2b\left(2a+3b\right)
Expand
4ab+6b^{2}
Share
Copied to clipboard
\left(4a\right)^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Consider \left(4a-5b\right)\left(4a+5b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4^{2}a^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Expand \left(4a\right)^{2}.
16a^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Calculate 4 to the power of 2 and get 16.
16a^{2}-5^{2}b^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Expand \left(5b\right)^{2}.
16a^{2}-25b^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Calculate 5 to the power of 2 and get 25.
16a^{2}-25b^{2}-\left(16a^{2}-4ab-6b^{2}\right)+\left(-5b\right)^{2}
Use the distributive property to multiply 4a+2b by 4a-3b and combine like terms.
16a^{2}-25b^{2}-16a^{2}+4ab+6b^{2}+\left(-5b\right)^{2}
To find the opposite of 16a^{2}-4ab-6b^{2}, find the opposite of each term.
-25b^{2}+4ab+6b^{2}+\left(-5b\right)^{2}
Combine 16a^{2} and -16a^{2} to get 0.
-19b^{2}+4ab+\left(-5b\right)^{2}
Combine -25b^{2} and 6b^{2} to get -19b^{2}.
-19b^{2}+4ab+\left(-5\right)^{2}b^{2}
Expand \left(-5b\right)^{2}.
-19b^{2}+4ab+25b^{2}
Calculate -5 to the power of 2 and get 25.
6b^{2}+4ab
Combine -19b^{2} and 25b^{2} to get 6b^{2}.
\left(4a\right)^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Consider \left(4a-5b\right)\left(4a+5b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4^{2}a^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Expand \left(4a\right)^{2}.
16a^{2}-\left(5b\right)^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Calculate 4 to the power of 2 and get 16.
16a^{2}-5^{2}b^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Expand \left(5b\right)^{2}.
16a^{2}-25b^{2}-\left(4a+2b\right)\left(4a-3b\right)+\left(-5b\right)^{2}
Calculate 5 to the power of 2 and get 25.
16a^{2}-25b^{2}-\left(16a^{2}-4ab-6b^{2}\right)+\left(-5b\right)^{2}
Use the distributive property to multiply 4a+2b by 4a-3b and combine like terms.
16a^{2}-25b^{2}-16a^{2}+4ab+6b^{2}+\left(-5b\right)^{2}
To find the opposite of 16a^{2}-4ab-6b^{2}, find the opposite of each term.
-25b^{2}+4ab+6b^{2}+\left(-5b\right)^{2}
Combine 16a^{2} and -16a^{2} to get 0.
-19b^{2}+4ab+\left(-5b\right)^{2}
Combine -25b^{2} and 6b^{2} to get -19b^{2}.
-19b^{2}+4ab+\left(-5\right)^{2}b^{2}
Expand \left(-5b\right)^{2}.
-19b^{2}+4ab+25b^{2}
Calculate -5 to the power of 2 and get 25.
6b^{2}+4ab
Combine -19b^{2} and 25b^{2} to get 6b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}