Evaluate
20a^{2}+4a-23
Expand
20a^{2}+4a-23
Share
Copied to clipboard
16a^{2}+8a+1-4\left(a+2\right)\left(3-a\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(4a+1\right)^{2}.
16a^{2}+8a+1+\left(-4a-8\right)\left(3-a\right)
Use the distributive property to multiply -4 by a+2.
16a^{2}+8a+1-4a+4a^{2}-24
Use the distributive property to multiply -4a-8 by 3-a and combine like terms.
16a^{2}+4a+1+4a^{2}-24
Combine 8a and -4a to get 4a.
20a^{2}+4a+1-24
Combine 16a^{2} and 4a^{2} to get 20a^{2}.
20a^{2}+4a-23
Subtract 24 from 1 to get -23.
16a^{2}+8a+1-4\left(a+2\right)\left(3-a\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(4a+1\right)^{2}.
16a^{2}+8a+1+\left(-4a-8\right)\left(3-a\right)
Use the distributive property to multiply -4 by a+2.
16a^{2}+8a+1-4a+4a^{2}-24
Use the distributive property to multiply -4a-8 by 3-a and combine like terms.
16a^{2}+4a+1+4a^{2}-24
Combine 8a and -4a to get 4a.
20a^{2}+4a+1-24
Combine 16a^{2} and 4a^{2} to get 20a^{2}.
20a^{2}+4a-23
Subtract 24 from 1 to get -23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}