Solve for y
y=\sqrt{46}+2\approx 8.782329983
y=2-\sqrt{46}\approx -4.782329983
Graph
Share
Copied to clipboard
16-8y+y^{2}+y^{2}=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-y\right)^{2}.
16-8y+2y^{2}=100
Combine y^{2} and y^{2} to get 2y^{2}.
16-8y+2y^{2}-100=0
Subtract 100 from both sides.
-84-8y+2y^{2}=0
Subtract 100 from 16 to get -84.
2y^{2}-8y-84=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-84\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and -84 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-84\right)}}{2\times 2}
Square -8.
y=\frac{-\left(-8\right)±\sqrt{64-8\left(-84\right)}}{2\times 2}
Multiply -4 times 2.
y=\frac{-\left(-8\right)±\sqrt{64+672}}{2\times 2}
Multiply -8 times -84.
y=\frac{-\left(-8\right)±\sqrt{736}}{2\times 2}
Add 64 to 672.
y=\frac{-\left(-8\right)±4\sqrt{46}}{2\times 2}
Take the square root of 736.
y=\frac{8±4\sqrt{46}}{2\times 2}
The opposite of -8 is 8.
y=\frac{8±4\sqrt{46}}{4}
Multiply 2 times 2.
y=\frac{4\sqrt{46}+8}{4}
Now solve the equation y=\frac{8±4\sqrt{46}}{4} when ± is plus. Add 8 to 4\sqrt{46}.
y=\sqrt{46}+2
Divide 8+4\sqrt{46} by 4.
y=\frac{8-4\sqrt{46}}{4}
Now solve the equation y=\frac{8±4\sqrt{46}}{4} when ± is minus. Subtract 4\sqrt{46} from 8.
y=2-\sqrt{46}
Divide 8-4\sqrt{46} by 4.
y=\sqrt{46}+2 y=2-\sqrt{46}
The equation is now solved.
16-8y+y^{2}+y^{2}=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-y\right)^{2}.
16-8y+2y^{2}=100
Combine y^{2} and y^{2} to get 2y^{2}.
-8y+2y^{2}=100-16
Subtract 16 from both sides.
-8y+2y^{2}=84
Subtract 16 from 100 to get 84.
2y^{2}-8y=84
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2y^{2}-8y}{2}=\frac{84}{2}
Divide both sides by 2.
y^{2}+\left(-\frac{8}{2}\right)y=\frac{84}{2}
Dividing by 2 undoes the multiplication by 2.
y^{2}-4y=\frac{84}{2}
Divide -8 by 2.
y^{2}-4y=42
Divide 84 by 2.
y^{2}-4y+\left(-2\right)^{2}=42+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-4y+4=42+4
Square -2.
y^{2}-4y+4=46
Add 42 to 4.
\left(y-2\right)^{2}=46
Factor y^{2}-4y+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-2\right)^{2}}=\sqrt{46}
Take the square root of both sides of the equation.
y-2=\sqrt{46} y-2=-\sqrt{46}
Simplify.
y=\sqrt{46}+2 y=2-\sqrt{46}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}