Solve for x
x=\frac{\sqrt{10}}{2}+2\approx 3.58113883
x=-\frac{\sqrt{10}}{2}+2\approx 0.41886117
Graph
Share
Copied to clipboard
\left(12-3x\right)x=\frac{9}{2}
Use the distributive property to multiply 4-x by 3.
12x-3x^{2}=\frac{9}{2}
Use the distributive property to multiply 12-3x by x.
12x-3x^{2}-\frac{9}{2}=0
Subtract \frac{9}{2} from both sides.
-3x^{2}+12x-\frac{9}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\left(-3\right)\left(-\frac{9}{2}\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 12 for b, and -\frac{9}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-3\right)\left(-\frac{9}{2}\right)}}{2\left(-3\right)}
Square 12.
x=\frac{-12±\sqrt{144+12\left(-\frac{9}{2}\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-12±\sqrt{144-54}}{2\left(-3\right)}
Multiply 12 times -\frac{9}{2}.
x=\frac{-12±\sqrt{90}}{2\left(-3\right)}
Add 144 to -54.
x=\frac{-12±3\sqrt{10}}{2\left(-3\right)}
Take the square root of 90.
x=\frac{-12±3\sqrt{10}}{-6}
Multiply 2 times -3.
x=\frac{3\sqrt{10}-12}{-6}
Now solve the equation x=\frac{-12±3\sqrt{10}}{-6} when ± is plus. Add -12 to 3\sqrt{10}.
x=-\frac{\sqrt{10}}{2}+2
Divide -12+3\sqrt{10} by -6.
x=\frac{-3\sqrt{10}-12}{-6}
Now solve the equation x=\frac{-12±3\sqrt{10}}{-6} when ± is minus. Subtract 3\sqrt{10} from -12.
x=\frac{\sqrt{10}}{2}+2
Divide -12-3\sqrt{10} by -6.
x=-\frac{\sqrt{10}}{2}+2 x=\frac{\sqrt{10}}{2}+2
The equation is now solved.
\left(12-3x\right)x=\frac{9}{2}
Use the distributive property to multiply 4-x by 3.
12x-3x^{2}=\frac{9}{2}
Use the distributive property to multiply 12-3x by x.
-3x^{2}+12x=\frac{9}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+12x}{-3}=\frac{\frac{9}{2}}{-3}
Divide both sides by -3.
x^{2}+\frac{12}{-3}x=\frac{\frac{9}{2}}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-4x=\frac{\frac{9}{2}}{-3}
Divide 12 by -3.
x^{2}-4x=-\frac{3}{2}
Divide \frac{9}{2} by -3.
x^{2}-4x+\left(-2\right)^{2}=-\frac{3}{2}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{3}{2}+4
Square -2.
x^{2}-4x+4=\frac{5}{2}
Add -\frac{3}{2} to 4.
\left(x-2\right)^{2}=\frac{5}{2}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{5}{2}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{10}}{2} x-2=-\frac{\sqrt{10}}{2}
Simplify.
x=\frac{\sqrt{10}}{2}+2 x=-\frac{\sqrt{10}}{2}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}