Solve for x
x=\frac{\sqrt{2}}{2}\approx 0.707106781
x=-\frac{\sqrt{2}}{2}\approx -0.707106781
Graph
Share
Copied to clipboard
16-8x+x^{2}-\left(3x+2\right)^{2}=4\left(2-5x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
16-8x+x^{2}-\left(9x^{2}+12x+4\right)=4\left(2-5x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
16-8x+x^{2}-9x^{2}-12x-4=4\left(2-5x\right)
To find the opposite of 9x^{2}+12x+4, find the opposite of each term.
16-8x-8x^{2}-12x-4=4\left(2-5x\right)
Combine x^{2} and -9x^{2} to get -8x^{2}.
16-20x-8x^{2}-4=4\left(2-5x\right)
Combine -8x and -12x to get -20x.
12-20x-8x^{2}=4\left(2-5x\right)
Subtract 4 from 16 to get 12.
12-20x-8x^{2}=8-20x
Use the distributive property to multiply 4 by 2-5x.
12-20x-8x^{2}+20x=8
Add 20x to both sides.
12-8x^{2}=8
Combine -20x and 20x to get 0.
-8x^{2}=8-12
Subtract 12 from both sides.
-8x^{2}=-4
Subtract 12 from 8 to get -4.
x^{2}=\frac{-4}{-8}
Divide both sides by -8.
x^{2}=\frac{1}{2}
Reduce the fraction \frac{-4}{-8} to lowest terms by extracting and canceling out -4.
x=\frac{\sqrt{2}}{2} x=-\frac{\sqrt{2}}{2}
Take the square root of both sides of the equation.
16-8x+x^{2}-\left(3x+2\right)^{2}=4\left(2-5x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
16-8x+x^{2}-\left(9x^{2}+12x+4\right)=4\left(2-5x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
16-8x+x^{2}-9x^{2}-12x-4=4\left(2-5x\right)
To find the opposite of 9x^{2}+12x+4, find the opposite of each term.
16-8x-8x^{2}-12x-4=4\left(2-5x\right)
Combine x^{2} and -9x^{2} to get -8x^{2}.
16-20x-8x^{2}-4=4\left(2-5x\right)
Combine -8x and -12x to get -20x.
12-20x-8x^{2}=4\left(2-5x\right)
Subtract 4 from 16 to get 12.
12-20x-8x^{2}=8-20x
Use the distributive property to multiply 4 by 2-5x.
12-20x-8x^{2}-8=-20x
Subtract 8 from both sides.
4-20x-8x^{2}=-20x
Subtract 8 from 12 to get 4.
4-20x-8x^{2}+20x=0
Add 20x to both sides.
4-8x^{2}=0
Combine -20x and 20x to get 0.
-8x^{2}+4=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-8\right)\times 4}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 0 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-8\right)\times 4}}{2\left(-8\right)}
Square 0.
x=\frac{0±\sqrt{32\times 4}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{0±\sqrt{128}}{2\left(-8\right)}
Multiply 32 times 4.
x=\frac{0±8\sqrt{2}}{2\left(-8\right)}
Take the square root of 128.
x=\frac{0±8\sqrt{2}}{-16}
Multiply 2 times -8.
x=-\frac{\sqrt{2}}{2}
Now solve the equation x=\frac{0±8\sqrt{2}}{-16} when ± is plus.
x=\frac{\sqrt{2}}{2}
Now solve the equation x=\frac{0±8\sqrt{2}}{-16} when ± is minus.
x=-\frac{\sqrt{2}}{2} x=\frac{\sqrt{2}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}