Solve for x (complex solution)
x=4+2i
x=4-2i
Graph
Share
Copied to clipboard
\left(-x+4\right)^{2}=-4
Subtracting 4 from itself leaves 0.
-x+4=2i -x+4=-2i
Take the square root of both sides of the equation.
-x+4-4=2i-4 -x+4-4=-2i-4
Subtract 4 from both sides of the equation.
-x=2i-4 -x=-2i-4
Subtracting 4 from itself leaves 0.
-x=-4+2i
Subtract 4 from 2i.
-x=-4-2i
Subtract 4 from -2i.
\frac{-x}{-1}=\frac{-4+2i}{-1} \frac{-x}{-1}=\frac{-4-2i}{-1}
Divide both sides by -1.
x=\frac{-4+2i}{-1} x=\frac{-4-2i}{-1}
Dividing by -1 undoes the multiplication by -1.
x=4-2i
Divide -4+2i by -1.
x=4+2i
Divide -4-2i by -1.
x=4-2i x=4+2i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}