Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

16-8x+x^{2}+x^{2}=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
16-8x+2x^{2}=5
Combine x^{2} and x^{2} to get 2x^{2}.
16-8x+2x^{2}-5=0
Subtract 5 from both sides.
11-8x+2x^{2}=0
Subtract 5 from 16 to get 11.
2x^{2}-8x+11=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 11}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 11}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 11}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64-88}}{2\times 2}
Multiply -8 times 11.
x=\frac{-\left(-8\right)±\sqrt{-24}}{2\times 2}
Add 64 to -88.
x=\frac{-\left(-8\right)±2\sqrt{6}i}{2\times 2}
Take the square root of -24.
x=\frac{8±2\sqrt{6}i}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{6}i}{4}
Multiply 2 times 2.
x=\frac{8+2\sqrt{6}i}{4}
Now solve the equation x=\frac{8±2\sqrt{6}i}{4} when ± is plus. Add 8 to 2i\sqrt{6}.
x=\frac{\sqrt{6}i}{2}+2
Divide 8+2i\sqrt{6} by 4.
x=\frac{-2\sqrt{6}i+8}{4}
Now solve the equation x=\frac{8±2\sqrt{6}i}{4} when ± is minus. Subtract 2i\sqrt{6} from 8.
x=-\frac{\sqrt{6}i}{2}+2
Divide 8-2i\sqrt{6} by 4.
x=\frac{\sqrt{6}i}{2}+2 x=-\frac{\sqrt{6}i}{2}+2
The equation is now solved.
16-8x+x^{2}+x^{2}=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
16-8x+2x^{2}=5
Combine x^{2} and x^{2} to get 2x^{2}.
-8x+2x^{2}=5-16
Subtract 16 from both sides.
-8x+2x^{2}=-11
Subtract 16 from 5 to get -11.
2x^{2}-8x=-11
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-8x}{2}=-\frac{11}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=-\frac{11}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=-\frac{11}{2}
Divide -8 by 2.
x^{2}-4x+\left(-2\right)^{2}=-\frac{11}{2}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{11}{2}+4
Square -2.
x^{2}-4x+4=-\frac{3}{2}
Add -\frac{11}{2} to 4.
\left(x-2\right)^{2}=-\frac{3}{2}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-\frac{3}{2}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{6}i}{2} x-2=-\frac{\sqrt{6}i}{2}
Simplify.
x=\frac{\sqrt{6}i}{2}+2 x=-\frac{\sqrt{6}i}{2}+2
Add 2 to both sides of the equation.