Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16-8x+x^{2}+\left(4-x\right)^{2}=\left(\frac{5}{4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
16-8x+x^{2}+16-8x+x^{2}=\left(\frac{5}{4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
32-8x+x^{2}-8x+x^{2}=\left(\frac{5}{4}\right)^{2}
Add 16 and 16 to get 32.
32-16x+x^{2}+x^{2}=\left(\frac{5}{4}\right)^{2}
Combine -8x and -8x to get -16x.
32-16x+2x^{2}=\left(\frac{5}{4}\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
32-16x+2x^{2}=\frac{25}{16}
Calculate \frac{5}{4} to the power of 2 and get \frac{25}{16}.
32-16x+2x^{2}-\frac{25}{16}=0
Subtract \frac{25}{16} from both sides.
\frac{487}{16}-16x+2x^{2}=0
Subtract \frac{25}{16} from 32 to get \frac{487}{16}.
2x^{2}-16x+\frac{487}{16}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 2\times \frac{487}{16}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -16 for b, and \frac{487}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 2\times \frac{487}{16}}}{2\times 2}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-8\times \frac{487}{16}}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-16\right)±\sqrt{256-\frac{487}{2}}}{2\times 2}
Multiply -8 times \frac{487}{16}.
x=\frac{-\left(-16\right)±\sqrt{\frac{25}{2}}}{2\times 2}
Add 256 to -\frac{487}{2}.
x=\frac{-\left(-16\right)±\frac{5\sqrt{2}}{2}}{2\times 2}
Take the square root of \frac{25}{2}.
x=\frac{16±\frac{5\sqrt{2}}{2}}{2\times 2}
The opposite of -16 is 16.
x=\frac{16±\frac{5\sqrt{2}}{2}}{4}
Multiply 2 times 2.
x=\frac{\frac{5\sqrt{2}}{2}+16}{4}
Now solve the equation x=\frac{16±\frac{5\sqrt{2}}{2}}{4} when ± is plus. Add 16 to \frac{5\sqrt{2}}{2}.
x=\frac{5\sqrt{2}}{8}+4
Divide 16+\frac{5\sqrt{2}}{2} by 4.
x=\frac{-\frac{5\sqrt{2}}{2}+16}{4}
Now solve the equation x=\frac{16±\frac{5\sqrt{2}}{2}}{4} when ± is minus. Subtract \frac{5\sqrt{2}}{2} from 16.
x=-\frac{5\sqrt{2}}{8}+4
Divide 16-\frac{5\sqrt{2}}{2} by 4.
x=\frac{5\sqrt{2}}{8}+4 x=-\frac{5\sqrt{2}}{8}+4
The equation is now solved.
16-8x+x^{2}+\left(4-x\right)^{2}=\left(\frac{5}{4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
16-8x+x^{2}+16-8x+x^{2}=\left(\frac{5}{4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
32-8x+x^{2}-8x+x^{2}=\left(\frac{5}{4}\right)^{2}
Add 16 and 16 to get 32.
32-16x+x^{2}+x^{2}=\left(\frac{5}{4}\right)^{2}
Combine -8x and -8x to get -16x.
32-16x+2x^{2}=\left(\frac{5}{4}\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
32-16x+2x^{2}=\frac{25}{16}
Calculate \frac{5}{4} to the power of 2 and get \frac{25}{16}.
-16x+2x^{2}=\frac{25}{16}-32
Subtract 32 from both sides.
-16x+2x^{2}=-\frac{487}{16}
Subtract 32 from \frac{25}{16} to get -\frac{487}{16}.
2x^{2}-16x=-\frac{487}{16}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-16x}{2}=-\frac{\frac{487}{16}}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{16}{2}\right)x=-\frac{\frac{487}{16}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-8x=-\frac{\frac{487}{16}}{2}
Divide -16 by 2.
x^{2}-8x=-\frac{487}{32}
Divide -\frac{487}{16} by 2.
x^{2}-8x+\left(-4\right)^{2}=-\frac{487}{32}+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-\frac{487}{32}+16
Square -4.
x^{2}-8x+16=\frac{25}{32}
Add -\frac{487}{32} to 16.
\left(x-4\right)^{2}=\frac{25}{32}
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{\frac{25}{32}}
Take the square root of both sides of the equation.
x-4=\frac{5\sqrt{2}}{8} x-4=-\frac{5\sqrt{2}}{8}
Simplify.
x=\frac{5\sqrt{2}}{8}+4 x=-\frac{5\sqrt{2}}{8}+4
Add 4 to both sides of the equation.