Solve for p
p = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
p = \frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
16-8p+p^{2}=\left(5p-10\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-p\right)^{2}.
16-8p+p^{2}=25p^{2}-100p+100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5p-10\right)^{2}.
16-8p+p^{2}-25p^{2}=-100p+100
Subtract 25p^{2} from both sides.
16-8p-24p^{2}=-100p+100
Combine p^{2} and -25p^{2} to get -24p^{2}.
16-8p-24p^{2}+100p=100
Add 100p to both sides.
16+92p-24p^{2}=100
Combine -8p and 100p to get 92p.
16+92p-24p^{2}-100=0
Subtract 100 from both sides.
-84+92p-24p^{2}=0
Subtract 100 from 16 to get -84.
-24p^{2}+92p-84=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-92±\sqrt{92^{2}-4\left(-24\right)\left(-84\right)}}{2\left(-24\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -24 for a, 92 for b, and -84 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-92±\sqrt{8464-4\left(-24\right)\left(-84\right)}}{2\left(-24\right)}
Square 92.
p=\frac{-92±\sqrt{8464+96\left(-84\right)}}{2\left(-24\right)}
Multiply -4 times -24.
p=\frac{-92±\sqrt{8464-8064}}{2\left(-24\right)}
Multiply 96 times -84.
p=\frac{-92±\sqrt{400}}{2\left(-24\right)}
Add 8464 to -8064.
p=\frac{-92±20}{2\left(-24\right)}
Take the square root of 400.
p=\frac{-92±20}{-48}
Multiply 2 times -24.
p=-\frac{72}{-48}
Now solve the equation p=\frac{-92±20}{-48} when ± is plus. Add -92 to 20.
p=\frac{3}{2}
Reduce the fraction \frac{-72}{-48} to lowest terms by extracting and canceling out 24.
p=-\frac{112}{-48}
Now solve the equation p=\frac{-92±20}{-48} when ± is minus. Subtract 20 from -92.
p=\frac{7}{3}
Reduce the fraction \frac{-112}{-48} to lowest terms by extracting and canceling out 16.
p=\frac{3}{2} p=\frac{7}{3}
The equation is now solved.
16-8p+p^{2}=\left(5p-10\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-p\right)^{2}.
16-8p+p^{2}=25p^{2}-100p+100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5p-10\right)^{2}.
16-8p+p^{2}-25p^{2}=-100p+100
Subtract 25p^{2} from both sides.
16-8p-24p^{2}=-100p+100
Combine p^{2} and -25p^{2} to get -24p^{2}.
16-8p-24p^{2}+100p=100
Add 100p to both sides.
16+92p-24p^{2}=100
Combine -8p and 100p to get 92p.
92p-24p^{2}=100-16
Subtract 16 from both sides.
92p-24p^{2}=84
Subtract 16 from 100 to get 84.
-24p^{2}+92p=84
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-24p^{2}+92p}{-24}=\frac{84}{-24}
Divide both sides by -24.
p^{2}+\frac{92}{-24}p=\frac{84}{-24}
Dividing by -24 undoes the multiplication by -24.
p^{2}-\frac{23}{6}p=\frac{84}{-24}
Reduce the fraction \frac{92}{-24} to lowest terms by extracting and canceling out 4.
p^{2}-\frac{23}{6}p=-\frac{7}{2}
Reduce the fraction \frac{84}{-24} to lowest terms by extracting and canceling out 12.
p^{2}-\frac{23}{6}p+\left(-\frac{23}{12}\right)^{2}=-\frac{7}{2}+\left(-\frac{23}{12}\right)^{2}
Divide -\frac{23}{6}, the coefficient of the x term, by 2 to get -\frac{23}{12}. Then add the square of -\frac{23}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-\frac{23}{6}p+\frac{529}{144}=-\frac{7}{2}+\frac{529}{144}
Square -\frac{23}{12} by squaring both the numerator and the denominator of the fraction.
p^{2}-\frac{23}{6}p+\frac{529}{144}=\frac{25}{144}
Add -\frac{7}{2} to \frac{529}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(p-\frac{23}{12}\right)^{2}=\frac{25}{144}
Factor p^{2}-\frac{23}{6}p+\frac{529}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{23}{12}\right)^{2}}=\sqrt{\frac{25}{144}}
Take the square root of both sides of the equation.
p-\frac{23}{12}=\frac{5}{12} p-\frac{23}{12}=-\frac{5}{12}
Simplify.
p=\frac{7}{3} p=\frac{3}{2}
Add \frac{23}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}