Solve for k
k=-2
k=11
Share
Copied to clipboard
9k-20-k^{2}=-42
Use the distributive property to multiply 4-k by k-5 and combine like terms.
9k-20-k^{2}+42=0
Add 42 to both sides.
9k+22-k^{2}=0
Add -20 and 42 to get 22.
-k^{2}+9k+22=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\times 22}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 9 for b, and 22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-9±\sqrt{81-4\left(-1\right)\times 22}}{2\left(-1\right)}
Square 9.
k=\frac{-9±\sqrt{81+4\times 22}}{2\left(-1\right)}
Multiply -4 times -1.
k=\frac{-9±\sqrt{81+88}}{2\left(-1\right)}
Multiply 4 times 22.
k=\frac{-9±\sqrt{169}}{2\left(-1\right)}
Add 81 to 88.
k=\frac{-9±13}{2\left(-1\right)}
Take the square root of 169.
k=\frac{-9±13}{-2}
Multiply 2 times -1.
k=\frac{4}{-2}
Now solve the equation k=\frac{-9±13}{-2} when ± is plus. Add -9 to 13.
k=-2
Divide 4 by -2.
k=-\frac{22}{-2}
Now solve the equation k=\frac{-9±13}{-2} when ± is minus. Subtract 13 from -9.
k=11
Divide -22 by -2.
k=-2 k=11
The equation is now solved.
9k-20-k^{2}=-42
Use the distributive property to multiply 4-k by k-5 and combine like terms.
9k-k^{2}=-42+20
Add 20 to both sides.
9k-k^{2}=-22
Add -42 and 20 to get -22.
-k^{2}+9k=-22
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-k^{2}+9k}{-1}=-\frac{22}{-1}
Divide both sides by -1.
k^{2}+\frac{9}{-1}k=-\frac{22}{-1}
Dividing by -1 undoes the multiplication by -1.
k^{2}-9k=-\frac{22}{-1}
Divide 9 by -1.
k^{2}-9k=22
Divide -22 by -1.
k^{2}-9k+\left(-\frac{9}{2}\right)^{2}=22+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-9k+\frac{81}{4}=22+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
k^{2}-9k+\frac{81}{4}=\frac{169}{4}
Add 22 to \frac{81}{4}.
\left(k-\frac{9}{2}\right)^{2}=\frac{169}{4}
Factor k^{2}-9k+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{9}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
k-\frac{9}{2}=\frac{13}{2} k-\frac{9}{2}=-\frac{13}{2}
Simplify.
k=11 k=-2
Add \frac{9}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}