Evaluate
-5-15i
Real Part
-5
Share
Copied to clipboard
4\times 6+4\times \left(2i\right)-i\times 6-2i^{2}-\left(7-i\right)\left(4+3i\right)
Multiply complex numbers 4-i and 6+2i like you multiply binomials.
4\times 6+4\times \left(2i\right)-i\times 6-2\left(-1\right)-\left(7-i\right)\left(4+3i\right)
By definition, i^{2} is -1.
24+8i-6i+2-\left(7-i\right)\left(4+3i\right)
Do the multiplications in 4\times 6+4\times \left(2i\right)-i\times 6-2\left(-1\right).
24+2+\left(8-6\right)i-\left(7-i\right)\left(4+3i\right)
Combine the real and imaginary parts in 24+8i-6i+2.
26+2i-\left(7-i\right)\left(4+3i\right)
Do the additions in 24+2+\left(8-6\right)i.
26+2i-\left(7\times 4+7\times \left(3i\right)-i\times 4-3i^{2}\right)
Multiply complex numbers 7-i and 4+3i like you multiply binomials.
26+2i-\left(7\times 4+7\times \left(3i\right)-i\times 4-3\left(-1\right)\right)
By definition, i^{2} is -1.
26+2i-\left(28+21i-4i+3\right)
Do the multiplications in 7\times 4+7\times \left(3i\right)-i\times 4-3\left(-1\right).
26+2i-\left(28+3+\left(21-4\right)i\right)
Combine the real and imaginary parts in 28+21i-4i+3.
26+2i-\left(31+17i\right)
Do the additions in 28+3+\left(21-4\right)i.
26-31+\left(2-17\right)i
Subtract 31+17i from 26+2i by subtracting corresponding real and imaginary parts.
-5-15i
Subtract 31 from 26. Subtract 17 from 2.
Re(4\times 6+4\times \left(2i\right)-i\times 6-2i^{2}-\left(7-i\right)\left(4+3i\right))
Multiply complex numbers 4-i and 6+2i like you multiply binomials.
Re(4\times 6+4\times \left(2i\right)-i\times 6-2\left(-1\right)-\left(7-i\right)\left(4+3i\right))
By definition, i^{2} is -1.
Re(24+8i-6i+2-\left(7-i\right)\left(4+3i\right))
Do the multiplications in 4\times 6+4\times \left(2i\right)-i\times 6-2\left(-1\right).
Re(24+2+\left(8-6\right)i-\left(7-i\right)\left(4+3i\right))
Combine the real and imaginary parts in 24+8i-6i+2.
Re(26+2i-\left(7-i\right)\left(4+3i\right))
Do the additions in 24+2+\left(8-6\right)i.
Re(26+2i-\left(7\times 4+7\times \left(3i\right)-i\times 4-3i^{2}\right))
Multiply complex numbers 7-i and 4+3i like you multiply binomials.
Re(26+2i-\left(7\times 4+7\times \left(3i\right)-i\times 4-3\left(-1\right)\right))
By definition, i^{2} is -1.
Re(26+2i-\left(28+21i-4i+3\right))
Do the multiplications in 7\times 4+7\times \left(3i\right)-i\times 4-3\left(-1\right).
Re(26+2i-\left(28+3+\left(21-4\right)i\right))
Combine the real and imaginary parts in 28+21i-4i+3.
Re(26+2i-\left(31+17i\right))
Do the additions in 28+3+\left(21-4\right)i.
Re(26-31+\left(2-17\right)i)
Subtract 31+17i from 26+2i by subtracting corresponding real and imaginary parts.
Re(-5-15i)
Subtract 31 from 26. Subtract 17 from 2.
-5
The real part of -5-15i is -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}