Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

4\times 6+4\times \left(2i\right)-i\times 6-2i^{2}-\left(7-i\right)\left(4+3i\right)
Multiply complex numbers 4-i and 6+2i like you multiply binomials.
4\times 6+4\times \left(2i\right)-i\times 6-2\left(-1\right)-\left(7-i\right)\left(4+3i\right)
By definition, i^{2} is -1.
24+8i-6i+2-\left(7-i\right)\left(4+3i\right)
Do the multiplications in 4\times 6+4\times \left(2i\right)-i\times 6-2\left(-1\right).
24+2+\left(8-6\right)i-\left(7-i\right)\left(4+3i\right)
Combine the real and imaginary parts in 24+8i-6i+2.
26+2i-\left(7-i\right)\left(4+3i\right)
Do the additions in 24+2+\left(8-6\right)i.
26+2i-\left(7\times 4+7\times \left(3i\right)-i\times 4-3i^{2}\right)
Multiply complex numbers 7-i and 4+3i like you multiply binomials.
26+2i-\left(7\times 4+7\times \left(3i\right)-i\times 4-3\left(-1\right)\right)
By definition, i^{2} is -1.
26+2i-\left(28+21i-4i+3\right)
Do the multiplications in 7\times 4+7\times \left(3i\right)-i\times 4-3\left(-1\right).
26+2i-\left(28+3+\left(21-4\right)i\right)
Combine the real and imaginary parts in 28+21i-4i+3.
26+2i-\left(31+17i\right)
Do the additions in 28+3+\left(21-4\right)i.
26-31+\left(2-17\right)i
Subtract 31+17i from 26+2i by subtracting corresponding real and imaginary parts.
-5-15i
Subtract 31 from 26. Subtract 17 from 2.
Re(4\times 6+4\times \left(2i\right)-i\times 6-2i^{2}-\left(7-i\right)\left(4+3i\right))
Multiply complex numbers 4-i and 6+2i like you multiply binomials.
Re(4\times 6+4\times \left(2i\right)-i\times 6-2\left(-1\right)-\left(7-i\right)\left(4+3i\right))
By definition, i^{2} is -1.
Re(24+8i-6i+2-\left(7-i\right)\left(4+3i\right))
Do the multiplications in 4\times 6+4\times \left(2i\right)-i\times 6-2\left(-1\right).
Re(24+2+\left(8-6\right)i-\left(7-i\right)\left(4+3i\right))
Combine the real and imaginary parts in 24+8i-6i+2.
Re(26+2i-\left(7-i\right)\left(4+3i\right))
Do the additions in 24+2+\left(8-6\right)i.
Re(26+2i-\left(7\times 4+7\times \left(3i\right)-i\times 4-3i^{2}\right))
Multiply complex numbers 7-i and 4+3i like you multiply binomials.
Re(26+2i-\left(7\times 4+7\times \left(3i\right)-i\times 4-3\left(-1\right)\right))
By definition, i^{2} is -1.
Re(26+2i-\left(28+21i-4i+3\right))
Do the multiplications in 7\times 4+7\times \left(3i\right)-i\times 4-3\left(-1\right).
Re(26+2i-\left(28+3+\left(21-4\right)i\right))
Combine the real and imaginary parts in 28+21i-4i+3.
Re(26+2i-\left(31+17i\right))
Do the additions in 28+3+\left(21-4\right)i.
Re(26-31+\left(2-17\right)i)
Subtract 31+17i from 26+2i by subtracting corresponding real and imaginary parts.
Re(-5-15i)
Subtract 31 from 26. Subtract 17 from 2.
-5
The real part of -5-15i is -5.