Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

104-56x+2x^{2}=86x
Use the distributive property to multiply 4-2x by 26-x and combine like terms.
104-56x+2x^{2}-86x=0
Subtract 86x from both sides.
104-142x+2x^{2}=0
Combine -56x and -86x to get -142x.
2x^{2}-142x+104=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-142\right)±\sqrt{\left(-142\right)^{2}-4\times 2\times 104}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -142 for b, and 104 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-142\right)±\sqrt{20164-4\times 2\times 104}}{2\times 2}
Square -142.
x=\frac{-\left(-142\right)±\sqrt{20164-8\times 104}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-142\right)±\sqrt{20164-832}}{2\times 2}
Multiply -8 times 104.
x=\frac{-\left(-142\right)±\sqrt{19332}}{2\times 2}
Add 20164 to -832.
x=\frac{-\left(-142\right)±6\sqrt{537}}{2\times 2}
Take the square root of 19332.
x=\frac{142±6\sqrt{537}}{2\times 2}
The opposite of -142 is 142.
x=\frac{142±6\sqrt{537}}{4}
Multiply 2 times 2.
x=\frac{6\sqrt{537}+142}{4}
Now solve the equation x=\frac{142±6\sqrt{537}}{4} when ± is plus. Add 142 to 6\sqrt{537}.
x=\frac{3\sqrt{537}+71}{2}
Divide 142+6\sqrt{537} by 4.
x=\frac{142-6\sqrt{537}}{4}
Now solve the equation x=\frac{142±6\sqrt{537}}{4} when ± is minus. Subtract 6\sqrt{537} from 142.
x=\frac{71-3\sqrt{537}}{2}
Divide 142-6\sqrt{537} by 4.
x=\frac{3\sqrt{537}+71}{2} x=\frac{71-3\sqrt{537}}{2}
The equation is now solved.
104-56x+2x^{2}=86x
Use the distributive property to multiply 4-2x by 26-x and combine like terms.
104-56x+2x^{2}-86x=0
Subtract 86x from both sides.
104-142x+2x^{2}=0
Combine -56x and -86x to get -142x.
-142x+2x^{2}=-104
Subtract 104 from both sides. Anything subtracted from zero gives its negation.
2x^{2}-142x=-104
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-142x}{2}=-\frac{104}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{142}{2}\right)x=-\frac{104}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-71x=-\frac{104}{2}
Divide -142 by 2.
x^{2}-71x=-52
Divide -104 by 2.
x^{2}-71x+\left(-\frac{71}{2}\right)^{2}=-52+\left(-\frac{71}{2}\right)^{2}
Divide -71, the coefficient of the x term, by 2 to get -\frac{71}{2}. Then add the square of -\frac{71}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-71x+\frac{5041}{4}=-52+\frac{5041}{4}
Square -\frac{71}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-71x+\frac{5041}{4}=\frac{4833}{4}
Add -52 to \frac{5041}{4}.
\left(x-\frac{71}{2}\right)^{2}=\frac{4833}{4}
Factor x^{2}-71x+\frac{5041}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{71}{2}\right)^{2}}=\sqrt{\frac{4833}{4}}
Take the square root of both sides of the equation.
x-\frac{71}{2}=\frac{3\sqrt{537}}{2} x-\frac{71}{2}=-\frac{3\sqrt{537}}{2}
Simplify.
x=\frac{3\sqrt{537}+71}{2} x=\frac{71-3\sqrt{537}}{2}
Add \frac{71}{2} to both sides of the equation.