Solve for m
m = \frac{9}{2} = 4\frac{1}{2} = 4.5
m=-3
Share
Copied to clipboard
-6m-4+4m^{2}=50
Use the distributive property to multiply 4-2m by -2m-1 and combine like terms.
-6m-4+4m^{2}-50=0
Subtract 50 from both sides.
-6m-54+4m^{2}=0
Subtract 50 from -4 to get -54.
4m^{2}-6m-54=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 4\left(-54\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -6 for b, and -54 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-6\right)±\sqrt{36-4\times 4\left(-54\right)}}{2\times 4}
Square -6.
m=\frac{-\left(-6\right)±\sqrt{36-16\left(-54\right)}}{2\times 4}
Multiply -4 times 4.
m=\frac{-\left(-6\right)±\sqrt{36+864}}{2\times 4}
Multiply -16 times -54.
m=\frac{-\left(-6\right)±\sqrt{900}}{2\times 4}
Add 36 to 864.
m=\frac{-\left(-6\right)±30}{2\times 4}
Take the square root of 900.
m=\frac{6±30}{2\times 4}
The opposite of -6 is 6.
m=\frac{6±30}{8}
Multiply 2 times 4.
m=\frac{36}{8}
Now solve the equation m=\frac{6±30}{8} when ± is plus. Add 6 to 30.
m=\frac{9}{2}
Reduce the fraction \frac{36}{8} to lowest terms by extracting and canceling out 4.
m=-\frac{24}{8}
Now solve the equation m=\frac{6±30}{8} when ± is minus. Subtract 30 from 6.
m=-3
Divide -24 by 8.
m=\frac{9}{2} m=-3
The equation is now solved.
-6m-4+4m^{2}=50
Use the distributive property to multiply 4-2m by -2m-1 and combine like terms.
-6m+4m^{2}=50+4
Add 4 to both sides.
-6m+4m^{2}=54
Add 50 and 4 to get 54.
4m^{2}-6m=54
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4m^{2}-6m}{4}=\frac{54}{4}
Divide both sides by 4.
m^{2}+\left(-\frac{6}{4}\right)m=\frac{54}{4}
Dividing by 4 undoes the multiplication by 4.
m^{2}-\frac{3}{2}m=\frac{54}{4}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
m^{2}-\frac{3}{2}m=\frac{27}{2}
Reduce the fraction \frac{54}{4} to lowest terms by extracting and canceling out 2.
m^{2}-\frac{3}{2}m+\left(-\frac{3}{4}\right)^{2}=\frac{27}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{3}{2}m+\frac{9}{16}=\frac{27}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{3}{2}m+\frac{9}{16}=\frac{225}{16}
Add \frac{27}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{3}{4}\right)^{2}=\frac{225}{16}
Factor m^{2}-\frac{3}{2}m+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{3}{4}\right)^{2}}=\sqrt{\frac{225}{16}}
Take the square root of both sides of the equation.
m-\frac{3}{4}=\frac{15}{4} m-\frac{3}{4}=-\frac{15}{4}
Simplify.
m=\frac{9}{2} m=-3
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}