Evaluate
5a^{4}-1
Expand
5a^{4}-1
Share
Copied to clipboard
4a^{4}-\left(1-a^{2}\right)\left(1+a^{2}\right)
Use the distributive property to multiply 1-a by 1+a and combine like terms.
4a^{4}-\left(1-\left(a^{2}\right)^{2}\right)
Consider \left(1-a^{2}\right)\left(1+a^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
4a^{4}-\left(1-a^{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4a^{4}-1+a^{4}
To find the opposite of 1-a^{4}, find the opposite of each term.
5a^{4}-1
Combine 4a^{4} and a^{4} to get 5a^{4}.
4a^{4}-\left(1-a^{2}\right)\left(1+a^{2}\right)
Use the distributive property to multiply 1-a by 1+a and combine like terms.
4a^{4}-\left(1-\left(a^{2}\right)^{2}\right)
Consider \left(1-a^{2}\right)\left(1+a^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
4a^{4}-\left(1-a^{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4a^{4}-1+a^{4}
To find the opposite of 1-a^{4}, find the opposite of each term.
5a^{4}-1
Combine 4a^{4} and a^{4} to get 5a^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}