Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{4\left(-7\right)}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Express 4\left(-\frac{7}{8}\right) as a single fraction.
\frac{\frac{-28}{8}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Multiply 4 and -7 to get -28.
\frac{-\frac{7}{2}}{\frac{1\times 4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Reduce the fraction \frac{-28}{8} to lowest terms by extracting and canceling out 4.
\frac{-\frac{7}{2}}{\frac{4+3}{4}-\frac{7}{8}-\frac{7}{12}}
Multiply 1 and 4 to get 4.
\frac{-\frac{7}{2}}{\frac{7}{4}-\frac{7}{8}-\frac{7}{12}}
Add 4 and 3 to get 7.
\frac{-\frac{7}{2}}{\frac{14}{8}-\frac{7}{8}-\frac{7}{12}}
Least common multiple of 4 and 8 is 8. Convert \frac{7}{4} and \frac{7}{8} to fractions with denominator 8.
\frac{-\frac{7}{2}}{\frac{14-7}{8}-\frac{7}{12}}
Since \frac{14}{8} and \frac{7}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{7}{2}}{\frac{7}{8}-\frac{7}{12}}
Subtract 7 from 14 to get 7.
\frac{-\frac{7}{2}}{\frac{21}{24}-\frac{14}{24}}
Least common multiple of 8 and 12 is 24. Convert \frac{7}{8} and \frac{7}{12} to fractions with denominator 24.
\frac{-\frac{7}{2}}{\frac{21-14}{24}}
Since \frac{21}{24} and \frac{14}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{7}{2}}{\frac{7}{24}}
Subtract 14 from 21 to get 7.
-\frac{7}{2}\times \frac{24}{7}
Divide -\frac{7}{2} by \frac{7}{24} by multiplying -\frac{7}{2} by the reciprocal of \frac{7}{24}.
\frac{-7\times 24}{2\times 7}
Multiply -\frac{7}{2} times \frac{24}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-168}{14}
Do the multiplications in the fraction \frac{-7\times 24}{2\times 7}.
-12
Divide -168 by 14 to get -12.