Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(4\sqrt{3}-8\sqrt{5}\right)\left(\sqrt{15}+5\right)-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Use the distributive property to multiply 4 by \sqrt{3}-2\sqrt{5}.
4\sqrt{3}\sqrt{15}+20\sqrt{3}-8\sqrt{5}\sqrt{15}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Use the distributive property to multiply 4\sqrt{3}-8\sqrt{5} by \sqrt{15}+5.
4\sqrt{3}\sqrt{3}\sqrt{5}+20\sqrt{3}-8\sqrt{5}\sqrt{15}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
4\times 3\sqrt{5}+20\sqrt{3}-8\sqrt{5}\sqrt{15}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
12\sqrt{5}+20\sqrt{3}-8\sqrt{5}\sqrt{15}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Multiply 4 and 3 to get 12.
12\sqrt{5}+20\sqrt{3}-8\sqrt{5}\sqrt{5}\sqrt{3}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
12\sqrt{5}+20\sqrt{3}-8\times 5\sqrt{3}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
12\sqrt{5}+20\sqrt{3}-40\sqrt{3}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Multiply -8 and 5 to get -40.
12\sqrt{5}-20\sqrt{3}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Combine 20\sqrt{3} and -40\sqrt{3} to get -20\sqrt{3}.
-28\sqrt{5}-20\sqrt{3}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Combine 12\sqrt{5} and -40\sqrt{5} to get -28\sqrt{5}.
-28\sqrt{5}-20\sqrt{3}-\left(\left(\sqrt{10}\right)^{2}-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{10}-\sqrt{2}\right)^{2}.
-28\sqrt{5}-20\sqrt{3}-\left(10-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{10} is 10.
-28\sqrt{5}-20\sqrt{3}-\left(10-2\sqrt{2}\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
-28\sqrt{5}-20\sqrt{3}-\left(10-2\times 2\sqrt{5}+\left(\sqrt{2}\right)^{2}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
-28\sqrt{5}-20\sqrt{3}-\left(10-4\sqrt{5}+\left(\sqrt{2}\right)^{2}\right)
Multiply -2 and 2 to get -4.
-28\sqrt{5}-20\sqrt{3}-\left(10-4\sqrt{5}+2\right)
The square of \sqrt{2} is 2.
-28\sqrt{5}-20\sqrt{3}-\left(12-4\sqrt{5}\right)
Add 10 and 2 to get 12.
-28\sqrt{5}-20\sqrt{3}-12+4\sqrt{5}
To find the opposite of 12-4\sqrt{5}, find the opposite of each term.
-24\sqrt{5}-20\sqrt{3}-12
Combine -28\sqrt{5} and 4\sqrt{5} to get -24\sqrt{5}.