Evaluate
-20\sqrt{3}-24\sqrt{5}-12\approx -100.306647611
Share
Copied to clipboard
\left(4\sqrt{3}-8\sqrt{5}\right)\left(\sqrt{15}+5\right)-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Use the distributive property to multiply 4 by \sqrt{3}-2\sqrt{5}.
4\sqrt{3}\sqrt{15}+20\sqrt{3}-8\sqrt{5}\sqrt{15}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Use the distributive property to multiply 4\sqrt{3}-8\sqrt{5} by \sqrt{15}+5.
4\sqrt{3}\sqrt{3}\sqrt{5}+20\sqrt{3}-8\sqrt{5}\sqrt{15}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
4\times 3\sqrt{5}+20\sqrt{3}-8\sqrt{5}\sqrt{15}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
12\sqrt{5}+20\sqrt{3}-8\sqrt{5}\sqrt{15}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Multiply 4 and 3 to get 12.
12\sqrt{5}+20\sqrt{3}-8\sqrt{5}\sqrt{5}\sqrt{3}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
12\sqrt{5}+20\sqrt{3}-8\times 5\sqrt{3}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
12\sqrt{5}+20\sqrt{3}-40\sqrt{3}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Multiply -8 and 5 to get -40.
12\sqrt{5}-20\sqrt{3}-40\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Combine 20\sqrt{3} and -40\sqrt{3} to get -20\sqrt{3}.
-28\sqrt{5}-20\sqrt{3}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Combine 12\sqrt{5} and -40\sqrt{5} to get -28\sqrt{5}.
-28\sqrt{5}-20\sqrt{3}-\left(\left(\sqrt{10}\right)^{2}-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{10}-\sqrt{2}\right)^{2}.
-28\sqrt{5}-20\sqrt{3}-\left(10-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{10} is 10.
-28\sqrt{5}-20\sqrt{3}-\left(10-2\sqrt{2}\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
-28\sqrt{5}-20\sqrt{3}-\left(10-2\times 2\sqrt{5}+\left(\sqrt{2}\right)^{2}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
-28\sqrt{5}-20\sqrt{3}-\left(10-4\sqrt{5}+\left(\sqrt{2}\right)^{2}\right)
Multiply -2 and 2 to get -4.
-28\sqrt{5}-20\sqrt{3}-\left(10-4\sqrt{5}+2\right)
The square of \sqrt{2} is 2.
-28\sqrt{5}-20\sqrt{3}-\left(12-4\sqrt{5}\right)
Add 10 and 2 to get 12.
-28\sqrt{5}-20\sqrt{3}-12+4\sqrt{5}
To find the opposite of 12-4\sqrt{5}, find the opposite of each term.
-24\sqrt{5}-20\sqrt{3}-12
Combine -28\sqrt{5} and 4\sqrt{5} to get -24\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}