Solve for x
x\geq -\frac{19}{4}
Graph
Share
Copied to clipboard
12\left(2+x\right)\geq 2\left(2x-1\right)-12
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
24+12x\geq 2\left(2x-1\right)-12
Use the distributive property to multiply 12 by 2+x.
24+12x\geq 4x-2-12
Use the distributive property to multiply 2 by 2x-1.
24+12x\geq 4x-14
Subtract 12 from -2 to get -14.
24+12x-4x\geq -14
Subtract 4x from both sides.
24+8x\geq -14
Combine 12x and -4x to get 8x.
8x\geq -14-24
Subtract 24 from both sides.
8x\geq -38
Subtract 24 from -14 to get -38.
x\geq \frac{-38}{8}
Divide both sides by 8. Since 8 is positive, the inequality direction remains the same.
x\geq -\frac{19}{4}
Reduce the fraction \frac{-38}{8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}