Solve for x
x\leq \frac{11}{2}
Graph
Quiz
Algebra
5 problems similar to:
( 4 ) \frac { 1 } { 3 } ( x - 1 ) \leq \frac { 1 } { 2 } ( 2 x + 1 )
Share
Copied to clipboard
\frac{4}{3}\left(x-1\right)\leq \frac{1}{2}\left(2x+1\right)
Multiply 4 and \frac{1}{3} to get \frac{4}{3}.
\frac{4}{3}x+\frac{4}{3}\left(-1\right)\leq \frac{1}{2}\left(2x+1\right)
Use the distributive property to multiply \frac{4}{3} by x-1.
\frac{4}{3}x-\frac{4}{3}\leq \frac{1}{2}\left(2x+1\right)
Multiply \frac{4}{3} and -1 to get -\frac{4}{3}.
\frac{4}{3}x-\frac{4}{3}\leq \frac{1}{2}\times 2x+\frac{1}{2}
Use the distributive property to multiply \frac{1}{2} by 2x+1.
\frac{4}{3}x-\frac{4}{3}\leq x+\frac{1}{2}
Cancel out 2 and 2.
\frac{4}{3}x-\frac{4}{3}-x\leq \frac{1}{2}
Subtract x from both sides.
\frac{1}{3}x-\frac{4}{3}\leq \frac{1}{2}
Combine \frac{4}{3}x and -x to get \frac{1}{3}x.
\frac{1}{3}x\leq \frac{1}{2}+\frac{4}{3}
Add \frac{4}{3} to both sides.
\frac{1}{3}x\leq \frac{3}{6}+\frac{8}{6}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{4}{3} to fractions with denominator 6.
\frac{1}{3}x\leq \frac{3+8}{6}
Since \frac{3}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
\frac{1}{3}x\leq \frac{11}{6}
Add 3 and 8 to get 11.
x\leq \frac{11}{6}\times 3
Multiply both sides by 3, the reciprocal of \frac{1}{3}. Since \frac{1}{3} is positive, the inequality direction remains the same.
x\leq \frac{11\times 3}{6}
Express \frac{11}{6}\times 3 as a single fraction.
x\leq \frac{33}{6}
Multiply 11 and 3 to get 33.
x\leq \frac{11}{2}
Reduce the fraction \frac{33}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}