Solve for x
x=\frac{31990}{63989}\approx 0.499929675
Graph
Share
Copied to clipboard
16\times \frac{2\left(2x-1\right)}{0.01}-2.5=\frac{0.22x}{0.2}-3.5
Calculate 4 to the power of 2 and get 16.
16\times \frac{4x-2}{0.01}-2.5=\frac{0.22x}{0.2}-3.5
Use the distributive property to multiply 2 by 2x-1.
16\times \frac{4x-2}{0.01}-2.5=1.1x-3.5
Divide 0.22x by 0.2 to get 1.1x.
16\left(\frac{4x}{0.01}+\frac{-2}{0.01}\right)-2.5=1.1x-3.5
Divide each term of 4x-2 by 0.01 to get \frac{4x}{0.01}+\frac{-2}{0.01}.
16\left(400x+\frac{-2}{0.01}\right)-2.5=1.1x-3.5
Divide 4x by 0.01 to get 400x.
16\left(400x-200\right)-2.5=1.1x-3.5
Expand \frac{-2}{0.01} by multiplying both numerator and the denominator by 100. Anything divided by one gives itself.
6400x-3200-2.5=1.1x-3.5
Use the distributive property to multiply 16 by 400x-200.
6400x-3202.5=1.1x-3.5
Subtract 2.5 from -3200 to get -3202.5.
6400x-3202.5-1.1x=-3.5
Subtract 1.1x from both sides.
6398.9x-3202.5=-3.5
Combine 6400x and -1.1x to get 6398.9x.
6398.9x=-3.5+3202.5
Add 3202.5 to both sides.
6398.9x=3199
Add -3.5 and 3202.5 to get 3199.
x=\frac{3199}{6398.9}
Divide both sides by 6398.9.
x=\frac{31990}{63989}
Expand \frac{3199}{6398.9} by multiplying both numerator and the denominator by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}