( 4 ( y - 2 ) = 2 x + 12
Solve for x
x=2\left(y-5\right)
Solve for y
y=\frac{x+10}{2}
Graph
Share
Copied to clipboard
4y-8=2x+12
Use the distributive property to multiply 4 by y-2.
2x+12=4y-8
Swap sides so that all variable terms are on the left hand side.
2x=4y-8-12
Subtract 12 from both sides.
2x=4y-20
Subtract 12 from -8 to get -20.
\frac{2x}{2}=\frac{4y-20}{2}
Divide both sides by 2.
x=\frac{4y-20}{2}
Dividing by 2 undoes the multiplication by 2.
x=2y-10
Divide -20+4y by 2.
4y-8=2x+12
Use the distributive property to multiply 4 by y-2.
4y=2x+12+8
Add 8 to both sides.
4y=2x+20
Add 12 and 8 to get 20.
\frac{4y}{4}=\frac{2x+20}{4}
Divide both sides by 4.
y=\frac{2x+20}{4}
Dividing by 4 undoes the multiplication by 4.
y=\frac{x}{2}+5
Divide 20+2x by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}