Evaluate
\frac{21}{5}=4.2
Factor
\frac{3 \cdot 7}{5} = 4\frac{1}{5} = 4.2
Share
Copied to clipboard
4\times \frac{5+1}{5}-\frac{2}{\frac{3\times 3+1}{3}}
Multiply 1 and 5 to get 5.
4\times \frac{6}{5}-\frac{2}{\frac{3\times 3+1}{3}}
Add 5 and 1 to get 6.
\frac{4\times 6}{5}-\frac{2}{\frac{3\times 3+1}{3}}
Express 4\times \frac{6}{5} as a single fraction.
\frac{24}{5}-\frac{2}{\frac{3\times 3+1}{3}}
Multiply 4 and 6 to get 24.
\frac{24}{5}-\frac{2\times 3}{3\times 3+1}
Divide 2 by \frac{3\times 3+1}{3} by multiplying 2 by the reciprocal of \frac{3\times 3+1}{3}.
\frac{24}{5}-\frac{6}{3\times 3+1}
Multiply 2 and 3 to get 6.
\frac{24}{5}-\frac{6}{9+1}
Multiply 3 and 3 to get 9.
\frac{24}{5}-\frac{6}{10}
Add 9 and 1 to get 10.
\frac{24}{5}-\frac{3}{5}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{24-3}{5}
Since \frac{24}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{21}{5}
Subtract 3 from 24 to get 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}