Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(4\sqrt{5}\right)^{2}-\left(2\sqrt{11}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4^{2}\left(\sqrt{5}\right)^{2}-\left(2\sqrt{11}\right)^{2}
Expand \left(4\sqrt{5}\right)^{2}.
16\left(\sqrt{5}\right)^{2}-\left(2\sqrt{11}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16\times 5-\left(2\sqrt{11}\right)^{2}
The square of \sqrt{5} is 5.
80-\left(2\sqrt{11}\right)^{2}
Multiply 16 and 5 to get 80.
80-2^{2}\left(\sqrt{11}\right)^{2}
Expand \left(2\sqrt{11}\right)^{2}.
80-4\left(\sqrt{11}\right)^{2}
Calculate 2 to the power of 2 and get 4.
80-4\times 11
The square of \sqrt{11} is 11.
80-44
Multiply 4 and 11 to get 44.
36
Subtract 44 from 80 to get 36.