Evaluate
88\sqrt{10}+232\approx 510.280434095
Factor
8 {(11 \sqrt{10} + 29)} = 510.280434095
Quiz
Arithmetic
5 problems similar to:
( 4 \sqrt { 2 } + 8 \sqrt { 5 } ) ( 9 \sqrt { 2 } + 4 \sqrt { 5 } )
Share
Copied to clipboard
36\left(\sqrt{2}\right)^{2}+16\sqrt{2}\sqrt{5}+72\sqrt{5}\sqrt{2}+32\left(\sqrt{5}\right)^{2}
Apply the distributive property by multiplying each term of 4\sqrt{2}+8\sqrt{5} by each term of 9\sqrt{2}+4\sqrt{5}.
36\times 2+16\sqrt{2}\sqrt{5}+72\sqrt{5}\sqrt{2}+32\left(\sqrt{5}\right)^{2}
The square of \sqrt{2} is 2.
72+16\sqrt{2}\sqrt{5}+72\sqrt{5}\sqrt{2}+32\left(\sqrt{5}\right)^{2}
Multiply 36 and 2 to get 72.
72+16\sqrt{10}+72\sqrt{5}\sqrt{2}+32\left(\sqrt{5}\right)^{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
72+16\sqrt{10}+72\sqrt{10}+32\left(\sqrt{5}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
72+88\sqrt{10}+32\left(\sqrt{5}\right)^{2}
Combine 16\sqrt{10} and 72\sqrt{10} to get 88\sqrt{10}.
72+88\sqrt{10}+32\times 5
The square of \sqrt{5} is 5.
72+88\sqrt{10}+160
Multiply 32 and 5 to get 160.
232+88\sqrt{10}
Add 72 and 160 to get 232.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}