Solve for x (complex solution)
x=8\pi \approx 25.132741229
x=-8\pi \approx -25.132741229
x=\pi n_{1}+\frac{\pi }{6}\text{, }n_{1}\in \mathrm{Z}
x=\pi n_{2}+\frac{5\pi }{6}\text{, }n_{2}\in \mathrm{Z}
Solve for x
x=-8\pi \approx -25.132741229
x=8\pi \approx 25.132741229
x=2\pi n_{1}+\frac{11\pi }{6}\text{, }n_{1}\in \mathrm{Z}\text{, }n_{1}\geq 4
x=2\pi n_{2}+\frac{7\pi }{6}\text{, }n_{2}\in \mathrm{Z}\text{, }n_{2}\geq 4
x=2\pi n_{3}+\frac{\pi }{6}\text{, }n_{3}\in \mathrm{Z}\text{, }n_{3}\geq 4
x=2\pi n_{4}+\frac{5\pi }{6}\text{, }n_{4}\in \mathrm{Z}\text{, }n_{4}\geq 4
x=2\pi n_{1}+\frac{11\pi }{6}\text{, }n_{1}\in \mathrm{Z}\text{, }n_{1}\leq -5
x=2\pi n_{2}+\frac{7\pi }{6}\text{, }n_{2}\in \mathrm{Z}\text{, }n_{2}\leq -5
x=2\pi n_{3}+\frac{\pi }{6}\text{, }n_{3}\in \mathrm{Z}\text{, }n_{3}\leq -5
x=2\pi n_{4}+\frac{5\pi }{6}\text{, }n_{4}\in \mathrm{Z}\text{, }n_{4}\leq -5
Graph
Quiz
Trigonometry
5 problems similar to:
( 4 \sin ^ { 2 } x - 1 ) \sqrt { x ^ { 2 } - 64 \pi ^ { 2 } } = 0
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}