Evaluate
\frac{13}{18}\approx 0.722222222
Factor
\frac{13}{2 \cdot 3 ^ {2}} = 0.7222222222222222
Share
Copied to clipboard
\frac{\frac{32+3}{8}-\frac{1\times 3+2}{3}}{\frac{3\times 4+3}{4}}
Multiply 4 and 8 to get 32.
\frac{\frac{35}{8}-\frac{1\times 3+2}{3}}{\frac{3\times 4+3}{4}}
Add 32 and 3 to get 35.
\frac{\frac{35}{8}-\frac{3+2}{3}}{\frac{3\times 4+3}{4}}
Multiply 1 and 3 to get 3.
\frac{\frac{35}{8}-\frac{5}{3}}{\frac{3\times 4+3}{4}}
Add 3 and 2 to get 5.
\frac{\frac{105}{24}-\frac{40}{24}}{\frac{3\times 4+3}{4}}
Least common multiple of 8 and 3 is 24. Convert \frac{35}{8} and \frac{5}{3} to fractions with denominator 24.
\frac{\frac{105-40}{24}}{\frac{3\times 4+3}{4}}
Since \frac{105}{24} and \frac{40}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{65}{24}}{\frac{3\times 4+3}{4}}
Subtract 40 from 105 to get 65.
\frac{\frac{65}{24}}{\frac{12+3}{4}}
Multiply 3 and 4 to get 12.
\frac{\frac{65}{24}}{\frac{15}{4}}
Add 12 and 3 to get 15.
\frac{65}{24}\times \frac{4}{15}
Divide \frac{65}{24} by \frac{15}{4} by multiplying \frac{65}{24} by the reciprocal of \frac{15}{4}.
\frac{65\times 4}{24\times 15}
Multiply \frac{65}{24} times \frac{4}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{260}{360}
Do the multiplications in the fraction \frac{65\times 4}{24\times 15}.
\frac{13}{18}
Reduce the fraction \frac{260}{360} to lowest terms by extracting and canceling out 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}