( 4 \frac { 2 } { 5 } - 2,9 ) \cdot 6 \frac { 1 } { 3 }
Evaluate
9,5
Factor
\frac{19}{2} = 9\frac{1}{2} = 9.5
Share
Copied to clipboard
\left(\frac{20+2}{5}-2,9\right)\times \frac{6\times 3+1}{3}
Multiply 4 and 5 to get 20.
\left(\frac{22}{5}-2,9\right)\times \frac{6\times 3+1}{3}
Add 20 and 2 to get 22.
\left(\frac{22}{5}-\frac{29}{10}\right)\times \frac{6\times 3+1}{3}
Convert decimal number 2,9 to fraction \frac{29}{10}.
\left(\frac{44}{10}-\frac{29}{10}\right)\times \frac{6\times 3+1}{3}
Least common multiple of 5 and 10 is 10. Convert \frac{22}{5} and \frac{29}{10} to fractions with denominator 10.
\frac{44-29}{10}\times \frac{6\times 3+1}{3}
Since \frac{44}{10} and \frac{29}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{15}{10}\times \frac{6\times 3+1}{3}
Subtract 29 from 44 to get 15.
\frac{3}{2}\times \frac{6\times 3+1}{3}
Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
\frac{3}{2}\times \frac{18+1}{3}
Multiply 6 and 3 to get 18.
\frac{3}{2}\times \frac{19}{3}
Add 18 and 1 to get 19.
\frac{3\times 19}{2\times 3}
Multiply \frac{3}{2} times \frac{19}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{19}{2}
Cancel out 3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}