Evaluate
\frac{14a}{27x}
Expand
\frac{14a}{27x}
Graph
Share
Copied to clipboard
\frac{4\left(-2\right)}{3}\times \frac{1}{x}\times \frac{a}{12}\left(-\frac{2\times 3+1}{3}\right)
Express 4\left(-\frac{2}{3}\right) as a single fraction.
\frac{-8}{3}\times \frac{1}{x}\times \frac{a}{12}\left(-\frac{2\times 3+1}{3}\right)
Multiply 4 and -2 to get -8.
-\frac{8}{3}\times \frac{1}{x}\times \frac{a}{12}\left(-\frac{2\times 3+1}{3}\right)
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
-\frac{8}{3}\times \frac{1}{x}\times \frac{a}{12}\left(-\frac{6+1}{3}\right)
Multiply 2 and 3 to get 6.
-\frac{8}{3}\times \frac{1}{x}\times \frac{a}{12}\left(-\frac{7}{3}\right)
Add 6 and 1 to get 7.
\frac{-8\left(-7\right)}{3\times 3}\times \frac{1}{x}\times \frac{a}{12}
Multiply -\frac{8}{3} times -\frac{7}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{56}{9}\times \frac{1}{x}\times \frac{a}{12}
Do the multiplications in the fraction \frac{-8\left(-7\right)}{3\times 3}.
\frac{56}{9x}\times \frac{a}{12}
Multiply \frac{56}{9} times \frac{1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{56a}{9x\times 12}
Multiply \frac{56}{9x} times \frac{a}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{14a}{3\times 9x}
Cancel out 4 in both numerator and denominator.
\frac{14a}{27x}
Multiply 3 and 9 to get 27.
\frac{4\left(-2\right)}{3}\times \frac{1}{x}\times \frac{a}{12}\left(-\frac{2\times 3+1}{3}\right)
Express 4\left(-\frac{2}{3}\right) as a single fraction.
\frac{-8}{3}\times \frac{1}{x}\times \frac{a}{12}\left(-\frac{2\times 3+1}{3}\right)
Multiply 4 and -2 to get -8.
-\frac{8}{3}\times \frac{1}{x}\times \frac{a}{12}\left(-\frac{2\times 3+1}{3}\right)
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
-\frac{8}{3}\times \frac{1}{x}\times \frac{a}{12}\left(-\frac{6+1}{3}\right)
Multiply 2 and 3 to get 6.
-\frac{8}{3}\times \frac{1}{x}\times \frac{a}{12}\left(-\frac{7}{3}\right)
Add 6 and 1 to get 7.
\frac{-8\left(-7\right)}{3\times 3}\times \frac{1}{x}\times \frac{a}{12}
Multiply -\frac{8}{3} times -\frac{7}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{56}{9}\times \frac{1}{x}\times \frac{a}{12}
Do the multiplications in the fraction \frac{-8\left(-7\right)}{3\times 3}.
\frac{56}{9x}\times \frac{a}{12}
Multiply \frac{56}{9} times \frac{1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{56a}{9x\times 12}
Multiply \frac{56}{9x} times \frac{a}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{14a}{3\times 9x}
Cancel out 4 in both numerator and denominator.
\frac{14a}{27x}
Multiply 3 and 9 to get 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}