Solve for b
b=0
Share
Copied to clipboard
4^{2}b^{2}=\left(5b\right)^{2}
Expand \left(4b\right)^{2}.
16b^{2}=\left(5b\right)^{2}
Calculate 4 to the power of 2 and get 16.
16b^{2}=5^{2}b^{2}
Expand \left(5b\right)^{2}.
16b^{2}=25b^{2}
Calculate 5 to the power of 2 and get 25.
16b^{2}-25b^{2}=0
Subtract 25b^{2} from both sides.
-9b^{2}=0
Combine 16b^{2} and -25b^{2} to get -9b^{2}.
b^{2}=0
Divide both sides by -9. Zero divided by any non-zero number gives zero.
b=0 b=0
Take the square root of both sides of the equation.
b=0
The equation is now solved. Solutions are the same.
4^{2}b^{2}=\left(5b\right)^{2}
Expand \left(4b\right)^{2}.
16b^{2}=\left(5b\right)^{2}
Calculate 4 to the power of 2 and get 16.
16b^{2}=5^{2}b^{2}
Expand \left(5b\right)^{2}.
16b^{2}=25b^{2}
Calculate 5 to the power of 2 and get 25.
16b^{2}-25b^{2}=0
Subtract 25b^{2} from both sides.
-9b^{2}=0
Combine 16b^{2} and -25b^{2} to get -9b^{2}.
b^{2}=0
Divide both sides by -9. Zero divided by any non-zero number gives zero.
b=\frac{0±\sqrt{0^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±0}{2}
Take the square root of 0^{2}.
b=0
Divide 0 by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}