Solve for z
z=2\left(y^{2}+8y+8\right)
Solve for y (complex solution)
y=\frac{\sqrt{2z+32}}{2}-4
y=-\frac{\sqrt{2z+32}}{2}-4
Solve for y
y=\frac{\sqrt{2z+32}}{2}-4
y=-\frac{\sqrt{2z+32}}{2}-4\text{, }z\geq -16
Share
Copied to clipboard
16+8y+y^{2}+2y\left(4+y\right)-y^{2}-z=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+y\right)^{2}.
16+8y+y^{2}+8y+2y^{2}-y^{2}-z=0
Use the distributive property to multiply 2y by 4+y.
16+16y+y^{2}+2y^{2}-y^{2}-z=0
Combine 8y and 8y to get 16y.
16+16y+3y^{2}-y^{2}-z=0
Combine y^{2} and 2y^{2} to get 3y^{2}.
16+16y+2y^{2}-z=0
Combine 3y^{2} and -y^{2} to get 2y^{2}.
16y+2y^{2}-z=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
2y^{2}-z=-16-16y
Subtract 16y from both sides.
-z=-16-16y-2y^{2}
Subtract 2y^{2} from both sides.
-z=-2y^{2}-16y-16
The equation is in standard form.
\frac{-z}{-1}=\frac{-2y^{2}-16y-16}{-1}
Divide both sides by -1.
z=\frac{-2y^{2}-16y-16}{-1}
Dividing by -1 undoes the multiplication by -1.
z=2y^{2}+16y+16
Divide -16-16y-2y^{2} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}