Solve for x
x=\frac{\Delta }{8}
Solve for Δ
\Delta =8x
Graph
Share
Copied to clipboard
16+8x+x^{2}=16+\Delta +x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+x\right)^{2}.
16+8x+x^{2}-x^{2}=16+\Delta
Subtract x^{2} from both sides.
16+8x=16+\Delta
Combine x^{2} and -x^{2} to get 0.
8x=16+\Delta -16
Subtract 16 from both sides.
8x=\Delta
Subtract 16 from 16 to get 0.
\frac{8x}{8}=\frac{\Delta }{8}
Divide both sides by 8.
x=\frac{\Delta }{8}
Dividing by 8 undoes the multiplication by 8.
16+8x+x^{2}=16+\Delta +x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+x\right)^{2}.
16+\Delta +x^{2}=16+8x+x^{2}
Swap sides so that all variable terms are on the left hand side.
\Delta +x^{2}=16+8x+x^{2}-16
Subtract 16 from both sides.
\Delta +x^{2}=8x+x^{2}
Subtract 16 from 16 to get 0.
\Delta =8x+x^{2}-x^{2}
Subtract x^{2} from both sides.
\Delta =8x
Combine x^{2} and -x^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}