Solve for x
x=-\frac{\left(m+4\right)^{2}}{20\left(1-m\right)}
m\neq 1
Solve for m (complex solution)
m=2\left(5\sqrt{x\left(x-1\right)}+5x-2\right)
m=2\left(-5\sqrt{x\left(x-1\right)}+5x-2\right)
Solve for m
m=2\left(5\sqrt{x\left(x-1\right)}+5x-2\right)
m=2\left(-5\sqrt{x\left(x-1\right)}+5x-2\right)\text{, }x\geq 1\text{ or }x\leq 0
Graph
Share
Copied to clipboard
16+8m+m^{2}-4x\left(5m-5\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+m\right)^{2}.
16+8m+m^{2}-20mx+20x=0
Use the distributive property to multiply -4x by 5m-5.
8m+m^{2}-20mx+20x=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
m^{2}-20mx+20x=-16-8m
Subtract 8m from both sides.
-20mx+20x=-16-8m-m^{2}
Subtract m^{2} from both sides.
\left(-20m+20\right)x=-16-8m-m^{2}
Combine all terms containing x.
\left(20-20m\right)x=-m^{2}-8m-16
The equation is in standard form.
\frac{\left(20-20m\right)x}{20-20m}=-\frac{\left(m+4\right)^{2}}{20-20m}
Divide both sides by 20-20m.
x=-\frac{\left(m+4\right)^{2}}{20-20m}
Dividing by 20-20m undoes the multiplication by 20-20m.
x=-\frac{\left(m+4\right)^{2}}{20\left(1-m\right)}
Divide -\left(m+4\right)^{2} by 20-20m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}