Evaluate
\frac{592}{35}\approx 16.914285714
Factor
\frac{37 \cdot 2 ^ {4}}{5 \cdot 7} = 16\frac{32}{35} = 16.914285714285715
Share
Copied to clipboard
\frac{11.4}{4.2}+15.2-1
Add 4 and 7.4 to get 11.4.
\frac{114}{42}+15.2-1
Expand \frac{11.4}{4.2} by multiplying both numerator and the denominator by 10.
\frac{19}{7}+15.2-1
Reduce the fraction \frac{114}{42} to lowest terms by extracting and canceling out 6.
\frac{19}{7}+\frac{76}{5}-1
Convert decimal number 15.2 to fraction \frac{152}{10}. Reduce the fraction \frac{152}{10} to lowest terms by extracting and canceling out 2.
\frac{95}{35}+\frac{532}{35}-1
Least common multiple of 7 and 5 is 35. Convert \frac{19}{7} and \frac{76}{5} to fractions with denominator 35.
\frac{95+532}{35}-1
Since \frac{95}{35} and \frac{532}{35} have the same denominator, add them by adding their numerators.
\frac{627}{35}-1
Add 95 and 532 to get 627.
\frac{627}{35}-\frac{35}{35}
Convert 1 to fraction \frac{35}{35}.
\frac{627-35}{35}
Since \frac{627}{35} and \frac{35}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{592}{35}
Subtract 35 from 627 to get 592.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}