Solve for x (complex solution)
x=\sqrt{201}-1\approx 13.177446879
x=-\left(\sqrt{201}+1\right)\approx -15.177446879
Solve for x
x=\sqrt{201}-1\approx 13.177446879
x=-\sqrt{201}-1\approx -15.177446879
Graph
Share
Copied to clipboard
4x+2x^{2}=400
Use the distributive property to multiply 4+2x by x.
4x+2x^{2}-400=0
Subtract 400 from both sides.
2x^{2}+4x-400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-400\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 4 for b, and -400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-400\right)}}{2\times 2}
Square 4.
x=\frac{-4±\sqrt{16-8\left(-400\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-4±\sqrt{16+3200}}{2\times 2}
Multiply -8 times -400.
x=\frac{-4±\sqrt{3216}}{2\times 2}
Add 16 to 3200.
x=\frac{-4±4\sqrt{201}}{2\times 2}
Take the square root of 3216.
x=\frac{-4±4\sqrt{201}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{201}-4}{4}
Now solve the equation x=\frac{-4±4\sqrt{201}}{4} when ± is plus. Add -4 to 4\sqrt{201}.
x=\sqrt{201}-1
Divide -4+4\sqrt{201} by 4.
x=\frac{-4\sqrt{201}-4}{4}
Now solve the equation x=\frac{-4±4\sqrt{201}}{4} when ± is minus. Subtract 4\sqrt{201} from -4.
x=-\sqrt{201}-1
Divide -4-4\sqrt{201} by 4.
x=\sqrt{201}-1 x=-\sqrt{201}-1
The equation is now solved.
4x+2x^{2}=400
Use the distributive property to multiply 4+2x by x.
2x^{2}+4x=400
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+4x}{2}=\frac{400}{2}
Divide both sides by 2.
x^{2}+\frac{4}{2}x=\frac{400}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+2x=\frac{400}{2}
Divide 4 by 2.
x^{2}+2x=200
Divide 400 by 2.
x^{2}+2x+1^{2}=200+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=200+1
Square 1.
x^{2}+2x+1=201
Add 200 to 1.
\left(x+1\right)^{2}=201
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{201}
Take the square root of both sides of the equation.
x+1=\sqrt{201} x+1=-\sqrt{201}
Simplify.
x=\sqrt{201}-1 x=-\sqrt{201}-1
Subtract 1 from both sides of the equation.
4x+2x^{2}=400
Use the distributive property to multiply 4+2x by x.
4x+2x^{2}-400=0
Subtract 400 from both sides.
2x^{2}+4x-400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-400\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 4 for b, and -400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-400\right)}}{2\times 2}
Square 4.
x=\frac{-4±\sqrt{16-8\left(-400\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-4±\sqrt{16+3200}}{2\times 2}
Multiply -8 times -400.
x=\frac{-4±\sqrt{3216}}{2\times 2}
Add 16 to 3200.
x=\frac{-4±4\sqrt{201}}{2\times 2}
Take the square root of 3216.
x=\frac{-4±4\sqrt{201}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{201}-4}{4}
Now solve the equation x=\frac{-4±4\sqrt{201}}{4} when ± is plus. Add -4 to 4\sqrt{201}.
x=\sqrt{201}-1
Divide -4+4\sqrt{201} by 4.
x=\frac{-4\sqrt{201}-4}{4}
Now solve the equation x=\frac{-4±4\sqrt{201}}{4} when ± is minus. Subtract 4\sqrt{201} from -4.
x=-\sqrt{201}-1
Divide -4-4\sqrt{201} by 4.
x=\sqrt{201}-1 x=-\sqrt{201}-1
The equation is now solved.
4x+2x^{2}=400
Use the distributive property to multiply 4+2x by x.
2x^{2}+4x=400
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+4x}{2}=\frac{400}{2}
Divide both sides by 2.
x^{2}+\frac{4}{2}x=\frac{400}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+2x=\frac{400}{2}
Divide 4 by 2.
x^{2}+2x=200
Divide 400 by 2.
x^{2}+2x+1^{2}=200+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=200+1
Square 1.
x^{2}+2x+1=201
Add 200 to 1.
\left(x+1\right)^{2}=201
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{201}
Take the square root of both sides of the equation.
x+1=\sqrt{201} x+1=-\sqrt{201}
Simplify.
x=\sqrt{201}-1 x=-\sqrt{201}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}