Solve for b
b=\frac{9k^{2}-4\left(ky\right)^{2}-3y^{2}}{ky}
k\neq 0\text{ and }y\neq 0
Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{\sqrt{y^{2}\left(108+b^{2}-48y^{2}\right)}-by}{2\left(4y^{2}-9\right)}\text{; }k=-\frac{\sqrt{y^{2}\left(108+b^{2}-48y^{2}\right)}+by}{2\left(4y^{2}-9\right)}\text{, }&y\neq \frac{3}{2}\text{ and }y\neq -\frac{3}{2}\text{ and }y\neq 0\\k=-\frac{3y}{b}\text{, }&b\neq 0\text{ and }\left(y=-\frac{3}{2}\text{ or }y=\frac{3}{2}\right)\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{y\left(\sqrt{108+b^{2}-48y^{2}}-b\right)}{2\left(4y^{2}-9\right)}\text{; }k=-\frac{y\left(\sqrt{108+b^{2}-48y^{2}}+b\right)}{2\left(4y^{2}-9\right)}\text{, }&y\neq 0\text{ and }|y|\neq \frac{3}{2}\text{ and }|y|\leq \frac{\sqrt{3b^{2}+324}}{12}\\k=-\frac{3y}{b}\text{, }&b\neq 0\text{ and }|y|=\frac{3}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(4+\frac{3}{k^{2}}\right)y^{2}k^{2}+kby+k^{2}\left(-9\right)=0
Multiply both sides of the equation by k^{2}, the least common multiple of k^{2},k.
\left(\frac{4k^{2}}{k^{2}}+\frac{3}{k^{2}}\right)y^{2}k^{2}+kby+k^{2}\left(-9\right)=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{k^{2}}{k^{2}}.
\frac{4k^{2}+3}{k^{2}}y^{2}k^{2}+kby+k^{2}\left(-9\right)=0
Since \frac{4k^{2}}{k^{2}} and \frac{3}{k^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(4k^{2}+3\right)y^{2}}{k^{2}}k^{2}+kby+k^{2}\left(-9\right)=0
Express \frac{4k^{2}+3}{k^{2}}y^{2} as a single fraction.
\frac{\left(4k^{2}+3\right)y^{2}k^{2}}{k^{2}}+kby+k^{2}\left(-9\right)=0
Express \frac{\left(4k^{2}+3\right)y^{2}}{k^{2}}k^{2} as a single fraction.
y^{2}\left(4k^{2}+3\right)+kby+k^{2}\left(-9\right)=0
Cancel out k^{2} in both numerator and denominator.
4y^{2}k^{2}+3y^{2}+kby+k^{2}\left(-9\right)=0
Use the distributive property to multiply y^{2} by 4k^{2}+3.
3y^{2}+kby+k^{2}\left(-9\right)=-4y^{2}k^{2}
Subtract 4y^{2}k^{2} from both sides. Anything subtracted from zero gives its negation.
kby+k^{2}\left(-9\right)=-4y^{2}k^{2}-3y^{2}
Subtract 3y^{2} from both sides.
kby=-4y^{2}k^{2}-3y^{2}-k^{2}\left(-9\right)
Subtract k^{2}\left(-9\right) from both sides.
kby=-4y^{2}k^{2}-3y^{2}+9k^{2}
Multiply -1 and -9 to get 9.
kyb=9k^{2}-3y^{2}-4k^{2}y^{2}
The equation is in standard form.
\frac{kyb}{ky}=\frac{9k^{2}-3y^{2}-4k^{2}y^{2}}{ky}
Divide both sides by ky.
b=\frac{9k^{2}-3y^{2}-4k^{2}y^{2}}{ky}
Dividing by ky undoes the multiplication by ky.
b=-4ky+\frac{9k}{y}-\frac{3y}{k}
Divide -4y^{2}k^{2}-3y^{2}+9k^{2} by ky.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}