Skip to main content
Solve for b
Tick mark Image
Solve for k (complex solution)
Tick mark Image
Solve for k
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(4+\frac{3}{k^{2}}\right)y^{2}k^{2}+kby+k^{2}\left(-9\right)=0
Multiply both sides of the equation by k^{2}, the least common multiple of k^{2},k.
\left(\frac{4k^{2}}{k^{2}}+\frac{3}{k^{2}}\right)y^{2}k^{2}+kby+k^{2}\left(-9\right)=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{k^{2}}{k^{2}}.
\frac{4k^{2}+3}{k^{2}}y^{2}k^{2}+kby+k^{2}\left(-9\right)=0
Since \frac{4k^{2}}{k^{2}} and \frac{3}{k^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(4k^{2}+3\right)y^{2}}{k^{2}}k^{2}+kby+k^{2}\left(-9\right)=0
Express \frac{4k^{2}+3}{k^{2}}y^{2} as a single fraction.
\frac{\left(4k^{2}+3\right)y^{2}k^{2}}{k^{2}}+kby+k^{2}\left(-9\right)=0
Express \frac{\left(4k^{2}+3\right)y^{2}}{k^{2}}k^{2} as a single fraction.
y^{2}\left(4k^{2}+3\right)+kby+k^{2}\left(-9\right)=0
Cancel out k^{2} in both numerator and denominator.
4y^{2}k^{2}+3y^{2}+kby+k^{2}\left(-9\right)=0
Use the distributive property to multiply y^{2} by 4k^{2}+3.
3y^{2}+kby+k^{2}\left(-9\right)=-4y^{2}k^{2}
Subtract 4y^{2}k^{2} from both sides. Anything subtracted from zero gives its negation.
kby+k^{2}\left(-9\right)=-4y^{2}k^{2}-3y^{2}
Subtract 3y^{2} from both sides.
kby=-4y^{2}k^{2}-3y^{2}-k^{2}\left(-9\right)
Subtract k^{2}\left(-9\right) from both sides.
kby=-4y^{2}k^{2}-3y^{2}+9k^{2}
Multiply -1 and -9 to get 9.
kyb=9k^{2}-3y^{2}-4k^{2}y^{2}
The equation is in standard form.
\frac{kyb}{ky}=\frac{9k^{2}-3y^{2}-4k^{2}y^{2}}{ky}
Divide both sides by ky.
b=\frac{9k^{2}-3y^{2}-4k^{2}y^{2}}{ky}
Dividing by ky undoes the multiplication by ky.
b=-4ky+\frac{9k}{y}-\frac{3y}{k}
Divide -4y^{2}k^{2}-3y^{2}+9k^{2} by ky.