Verify
true
Share
Copied to clipboard
160\left(320^{2}-160^{2}\right)\times \frac{1}{160}\geq 40\left(1\times 4+1\right)
Multiply both sides of the equation by 160, the least common multiple of 160,4. Since 160 is positive, the inequality direction remains the same.
160\left(102400-160^{2}\right)\times \frac{1}{160}\geq 40\left(1\times 4+1\right)
Calculate 320 to the power of 2 and get 102400.
160\left(102400-25600\right)\times \frac{1}{160}\geq 40\left(1\times 4+1\right)
Calculate 160 to the power of 2 and get 25600.
160\times 76800\times \frac{1}{160}\geq 40\left(1\times 4+1\right)
Subtract 25600 from 102400 to get 76800.
12288000\times \frac{1}{160}\geq 40\left(1\times 4+1\right)
Multiply 160 and 76800 to get 12288000.
\frac{12288000}{160}\geq 40\left(1\times 4+1\right)
Multiply 12288000 and \frac{1}{160} to get \frac{12288000}{160}.
76800\geq 40\left(1\times 4+1\right)
Divide 12288000 by 160 to get 76800.
76800\geq 40\left(4+1\right)
Multiply 1 and 4 to get 4.
76800\geq 40\times 5
Add 4 and 1 to get 5.
76800\geq 200
Multiply 40 and 5 to get 200.
\text{true}
Compare 76800 and 200.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}