Evaluate
\frac{18407}{15}\approx 1227.133333333
Factor
\frac{79 \cdot 233}{3 \cdot 5} = 1227\frac{2}{15} = 1227.1333333333334
Share
Copied to clipboard
\frac{32\times 3}{5}\times 64-\frac{1}{6}\times 8-\frac{1}{3}
Express 32\times \frac{3}{5} as a single fraction.
\frac{96}{5}\times 64-\frac{1}{6}\times 8-\frac{1}{3}
Multiply 32 and 3 to get 96.
\frac{96\times 64}{5}-\frac{1}{6}\times 8-\frac{1}{3}
Express \frac{96}{5}\times 64 as a single fraction.
\frac{6144}{5}-\frac{1}{6}\times 8-\frac{1}{3}
Multiply 96 and 64 to get 6144.
\frac{6144}{5}-\frac{8}{6}-\frac{1}{3}
Multiply \frac{1}{6} and 8 to get \frac{8}{6}.
\frac{6144}{5}-\frac{4}{3}-\frac{1}{3}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
\frac{18432}{15}-\frac{20}{15}-\frac{1}{3}
Least common multiple of 5 and 3 is 15. Convert \frac{6144}{5} and \frac{4}{3} to fractions with denominator 15.
\frac{18432-20}{15}-\frac{1}{3}
Since \frac{18432}{15} and \frac{20}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{18412}{15}-\frac{1}{3}
Subtract 20 from 18432 to get 18412.
\frac{18412}{15}-\frac{5}{15}
Least common multiple of 15 and 3 is 15. Convert \frac{18412}{15} and \frac{1}{3} to fractions with denominator 15.
\frac{18412-5}{15}
Since \frac{18412}{15} and \frac{5}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{18407}{15}
Subtract 5 from 18412 to get 18407.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}