Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

640x-32x^{2}=540
Use the distributive property to multiply 32x by 20-x.
640x-32x^{2}-540=0
Subtract 540 from both sides.
-32x^{2}+640x-540=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-640±\sqrt{640^{2}-4\left(-32\right)\left(-540\right)}}{2\left(-32\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -32 for a, 640 for b, and -540 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-640±\sqrt{409600-4\left(-32\right)\left(-540\right)}}{2\left(-32\right)}
Square 640.
x=\frac{-640±\sqrt{409600+128\left(-540\right)}}{2\left(-32\right)}
Multiply -4 times -32.
x=\frac{-640±\sqrt{409600-69120}}{2\left(-32\right)}
Multiply 128 times -540.
x=\frac{-640±\sqrt{340480}}{2\left(-32\right)}
Add 409600 to -69120.
x=\frac{-640±16\sqrt{1330}}{2\left(-32\right)}
Take the square root of 340480.
x=\frac{-640±16\sqrt{1330}}{-64}
Multiply 2 times -32.
x=\frac{16\sqrt{1330}-640}{-64}
Now solve the equation x=\frac{-640±16\sqrt{1330}}{-64} when ± is plus. Add -640 to 16\sqrt{1330}.
x=-\frac{\sqrt{1330}}{4}+10
Divide -640+16\sqrt{1330} by -64.
x=\frac{-16\sqrt{1330}-640}{-64}
Now solve the equation x=\frac{-640±16\sqrt{1330}}{-64} when ± is minus. Subtract 16\sqrt{1330} from -640.
x=\frac{\sqrt{1330}}{4}+10
Divide -640-16\sqrt{1330} by -64.
x=-\frac{\sqrt{1330}}{4}+10 x=\frac{\sqrt{1330}}{4}+10
The equation is now solved.
640x-32x^{2}=540
Use the distributive property to multiply 32x by 20-x.
-32x^{2}+640x=540
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-32x^{2}+640x}{-32}=\frac{540}{-32}
Divide both sides by -32.
x^{2}+\frac{640}{-32}x=\frac{540}{-32}
Dividing by -32 undoes the multiplication by -32.
x^{2}-20x=\frac{540}{-32}
Divide 640 by -32.
x^{2}-20x=-\frac{135}{8}
Reduce the fraction \frac{540}{-32} to lowest terms by extracting and canceling out 4.
x^{2}-20x+\left(-10\right)^{2}=-\frac{135}{8}+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=-\frac{135}{8}+100
Square -10.
x^{2}-20x+100=\frac{665}{8}
Add -\frac{135}{8} to 100.
\left(x-10\right)^{2}=\frac{665}{8}
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{\frac{665}{8}}
Take the square root of both sides of the equation.
x-10=\frac{\sqrt{1330}}{4} x-10=-\frac{\sqrt{1330}}{4}
Simplify.
x=\frac{\sqrt{1330}}{4}+10 x=-\frac{\sqrt{1330}}{4}+10
Add 10 to both sides of the equation.