Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\left(30\times 1-2^{2}\right)\left(15^{2}-30a+a^{2}\right)=750
Calculate 1 to the power of 2 and get 1.
\left(30-2^{2}\right)\left(15^{2}-30a+a^{2}\right)=750
Multiply 30 and 1 to get 30.
\left(30-4\right)\left(15^{2}-30a+a^{2}\right)=750
Calculate 2 to the power of 2 and get 4.
26\left(15^{2}-30a+a^{2}\right)=750
Subtract 4 from 30 to get 26.
26\left(225-30a+a^{2}\right)=750
Calculate 15 to the power of 2 and get 225.
5850-780a+26a^{2}=750
Use the distributive property to multiply 26 by 225-30a+a^{2}.
5850-780a+26a^{2}-750=0
Subtract 750 from both sides.
5100-780a+26a^{2}=0
Subtract 750 from 5850 to get 5100.
26a^{2}-780a+5100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-780\right)±\sqrt{\left(-780\right)^{2}-4\times 26\times 5100}}{2\times 26}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 26 for a, -780 for b, and 5100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-780\right)±\sqrt{608400-4\times 26\times 5100}}{2\times 26}
Square -780.
a=\frac{-\left(-780\right)±\sqrt{608400-104\times 5100}}{2\times 26}
Multiply -4 times 26.
a=\frac{-\left(-780\right)±\sqrt{608400-530400}}{2\times 26}
Multiply -104 times 5100.
a=\frac{-\left(-780\right)±\sqrt{78000}}{2\times 26}
Add 608400 to -530400.
a=\frac{-\left(-780\right)±20\sqrt{195}}{2\times 26}
Take the square root of 78000.
a=\frac{780±20\sqrt{195}}{2\times 26}
The opposite of -780 is 780.
a=\frac{780±20\sqrt{195}}{52}
Multiply 2 times 26.
a=\frac{20\sqrt{195}+780}{52}
Now solve the equation a=\frac{780±20\sqrt{195}}{52} when ± is plus. Add 780 to 20\sqrt{195}.
a=\frac{5\sqrt{195}}{13}+15
Divide 780+20\sqrt{195} by 52.
a=\frac{780-20\sqrt{195}}{52}
Now solve the equation a=\frac{780±20\sqrt{195}}{52} when ± is minus. Subtract 20\sqrt{195} from 780.
a=-\frac{5\sqrt{195}}{13}+15
Divide 780-20\sqrt{195} by 52.
a=\frac{5\sqrt{195}}{13}+15 a=-\frac{5\sqrt{195}}{13}+15
The equation is now solved.
\left(30\times 1-2^{2}\right)\left(15^{2}-30a+a^{2}\right)=750
Calculate 1 to the power of 2 and get 1.
\left(30-2^{2}\right)\left(15^{2}-30a+a^{2}\right)=750
Multiply 30 and 1 to get 30.
\left(30-4\right)\left(15^{2}-30a+a^{2}\right)=750
Calculate 2 to the power of 2 and get 4.
26\left(15^{2}-30a+a^{2}\right)=750
Subtract 4 from 30 to get 26.
26\left(225-30a+a^{2}\right)=750
Calculate 15 to the power of 2 and get 225.
5850-780a+26a^{2}=750
Use the distributive property to multiply 26 by 225-30a+a^{2}.
-780a+26a^{2}=750-5850
Subtract 5850 from both sides.
-780a+26a^{2}=-5100
Subtract 5850 from 750 to get -5100.
26a^{2}-780a=-5100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{26a^{2}-780a}{26}=-\frac{5100}{26}
Divide both sides by 26.
a^{2}+\left(-\frac{780}{26}\right)a=-\frac{5100}{26}
Dividing by 26 undoes the multiplication by 26.
a^{2}-30a=-\frac{5100}{26}
Divide -780 by 26.
a^{2}-30a=-\frac{2550}{13}
Reduce the fraction \frac{-5100}{26} to lowest terms by extracting and canceling out 2.
a^{2}-30a+\left(-15\right)^{2}=-\frac{2550}{13}+\left(-15\right)^{2}
Divide -30, the coefficient of the x term, by 2 to get -15. Then add the square of -15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-30a+225=-\frac{2550}{13}+225
Square -15.
a^{2}-30a+225=\frac{375}{13}
Add -\frac{2550}{13} to 225.
\left(a-15\right)^{2}=\frac{375}{13}
Factor a^{2}-30a+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-15\right)^{2}}=\sqrt{\frac{375}{13}}
Take the square root of both sides of the equation.
a-15=\frac{5\sqrt{195}}{13} a-15=-\frac{5\sqrt{195}}{13}
Simplify.
a=\frac{5\sqrt{195}}{13}+15 a=-\frac{5\sqrt{195}}{13}+15
Add 15 to both sides of the equation.