Solve for x
x=\frac{186\sqrt{10567}}{3305}-\frac{465}{661}\approx 5.081706524
x=-\frac{186\sqrt{10567}}{3305}-\frac{465}{661}\approx -6.488665677
Graph
Share
Copied to clipboard
9.61+\frac{155}{6}x+\frac{625}{36}x^{2}+x^{2}=24.8^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3.1+\frac{25}{6}x\right)^{2}.
9.61+\frac{155}{6}x+\frac{661}{36}x^{2}=24.8^{2}
Combine \frac{625}{36}x^{2} and x^{2} to get \frac{661}{36}x^{2}.
9.61+\frac{155}{6}x+\frac{661}{36}x^{2}=615.04
Calculate 24.8 to the power of 2 and get 615.04.
9.61+\frac{155}{6}x+\frac{661}{36}x^{2}-615.04=0
Subtract 615.04 from both sides.
-605.43+\frac{155}{6}x+\frac{661}{36}x^{2}=0
Subtract 615.04 from 9.61 to get -605.43.
\frac{661}{36}x^{2}+\frac{155}{6}x-605.43=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{155}{6}±\sqrt{\left(\frac{155}{6}\right)^{2}-4\times \frac{661}{36}\left(-605.43\right)}}{2\times \frac{661}{36}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{661}{36} for a, \frac{155}{6} for b, and -605.43 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{155}{6}±\sqrt{\frac{24025}{36}-4\times \frac{661}{36}\left(-605.43\right)}}{2\times \frac{661}{36}}
Square \frac{155}{6} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{155}{6}±\sqrt{\frac{24025}{36}-\frac{661}{9}\left(-605.43\right)}}{2\times \frac{661}{36}}
Multiply -4 times \frac{661}{36}.
x=\frac{-\frac{155}{6}±\sqrt{\frac{24025}{36}+\frac{4446547}{100}}}{2\times \frac{661}{36}}
Multiply -\frac{661}{9} times -605.43 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{155}{6}±\sqrt{\frac{10154887}{225}}}{2\times \frac{661}{36}}
Add \frac{24025}{36} to \frac{4446547}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{155}{6}±\frac{31\sqrt{10567}}{15}}{2\times \frac{661}{36}}
Take the square root of \frac{10154887}{225}.
x=\frac{-\frac{155}{6}±\frac{31\sqrt{10567}}{15}}{\frac{661}{18}}
Multiply 2 times \frac{661}{36}.
x=\frac{\frac{31\sqrt{10567}}{15}-\frac{155}{6}}{\frac{661}{18}}
Now solve the equation x=\frac{-\frac{155}{6}±\frac{31\sqrt{10567}}{15}}{\frac{661}{18}} when ± is plus. Add -\frac{155}{6} to \frac{31\sqrt{10567}}{15}.
x=\frac{186\sqrt{10567}}{3305}-\frac{465}{661}
Divide -\frac{155}{6}+\frac{31\sqrt{10567}}{15} by \frac{661}{18} by multiplying -\frac{155}{6}+\frac{31\sqrt{10567}}{15} by the reciprocal of \frac{661}{18}.
x=\frac{-\frac{31\sqrt{10567}}{15}-\frac{155}{6}}{\frac{661}{18}}
Now solve the equation x=\frac{-\frac{155}{6}±\frac{31\sqrt{10567}}{15}}{\frac{661}{18}} when ± is minus. Subtract \frac{31\sqrt{10567}}{15} from -\frac{155}{6}.
x=-\frac{186\sqrt{10567}}{3305}-\frac{465}{661}
Divide -\frac{155}{6}-\frac{31\sqrt{10567}}{15} by \frac{661}{18} by multiplying -\frac{155}{6}-\frac{31\sqrt{10567}}{15} by the reciprocal of \frac{661}{18}.
x=\frac{186\sqrt{10567}}{3305}-\frac{465}{661} x=-\frac{186\sqrt{10567}}{3305}-\frac{465}{661}
The equation is now solved.
9.61+\frac{155}{6}x+\frac{625}{36}x^{2}+x^{2}=24.8^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3.1+\frac{25}{6}x\right)^{2}.
9.61+\frac{155}{6}x+\frac{661}{36}x^{2}=24.8^{2}
Combine \frac{625}{36}x^{2} and x^{2} to get \frac{661}{36}x^{2}.
9.61+\frac{155}{6}x+\frac{661}{36}x^{2}=615.04
Calculate 24.8 to the power of 2 and get 615.04.
\frac{155}{6}x+\frac{661}{36}x^{2}=615.04-9.61
Subtract 9.61 from both sides.
\frac{155}{6}x+\frac{661}{36}x^{2}=605.43
Subtract 9.61 from 615.04 to get 605.43.
\frac{661}{36}x^{2}+\frac{155}{6}x=605.43
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{661}{36}x^{2}+\frac{155}{6}x}{\frac{661}{36}}=\frac{605.43}{\frac{661}{36}}
Divide both sides of the equation by \frac{661}{36}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{155}{6}}{\frac{661}{36}}x=\frac{605.43}{\frac{661}{36}}
Dividing by \frac{661}{36} undoes the multiplication by \frac{661}{36}.
x^{2}+\frac{930}{661}x=\frac{605.43}{\frac{661}{36}}
Divide \frac{155}{6} by \frac{661}{36} by multiplying \frac{155}{6} by the reciprocal of \frac{661}{36}.
x^{2}+\frac{930}{661}x=\frac{544887}{16525}
Divide 605.43 by \frac{661}{36} by multiplying 605.43 by the reciprocal of \frac{661}{36}.
x^{2}+\frac{930}{661}x+\left(\frac{465}{661}\right)^{2}=\frac{544887}{16525}+\left(\frac{465}{661}\right)^{2}
Divide \frac{930}{661}, the coefficient of the x term, by 2 to get \frac{465}{661}. Then add the square of \frac{465}{661} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{930}{661}x+\frac{216225}{436921}=\frac{544887}{16525}+\frac{216225}{436921}
Square \frac{465}{661} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{930}{661}x+\frac{216225}{436921}=\frac{365575932}{10923025}
Add \frac{544887}{16525} to \frac{216225}{436921} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{465}{661}\right)^{2}=\frac{365575932}{10923025}
Factor x^{2}+\frac{930}{661}x+\frac{216225}{436921}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{465}{661}\right)^{2}}=\sqrt{\frac{365575932}{10923025}}
Take the square root of both sides of the equation.
x+\frac{465}{661}=\frac{186\sqrt{10567}}{3305} x+\frac{465}{661}=-\frac{186\sqrt{10567}}{3305}
Simplify.
x=\frac{186\sqrt{10567}}{3305}-\frac{465}{661} x=-\frac{186\sqrt{10567}}{3305}-\frac{465}{661}
Subtract \frac{465}{661} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}