( 3,24 : \frac { 9 } { 7 } - 3 \frac { 1 } { 5 } : 1 \frac { 1 } { 3 } ) : ( - 0,9 )
Evaluate
-\frac{2}{15}\approx -0,133333333
Factor
-\frac{2}{15} = -0.13333333333333333
Share
Copied to clipboard
\frac{3,24\times \frac{7}{9}-\frac{\frac{3\times 5+1}{5}}{\frac{1\times 3+1}{3}}}{-0,9}
Divide 3,24 by \frac{9}{7} by multiplying 3,24 by the reciprocal of \frac{9}{7}.
\frac{\frac{81}{25}\times \frac{7}{9}-\frac{\frac{3\times 5+1}{5}}{\frac{1\times 3+1}{3}}}{-0,9}
Convert decimal number 3,24 to fraction \frac{324}{100}. Reduce the fraction \frac{324}{100} to lowest terms by extracting and canceling out 4.
\frac{\frac{81\times 7}{25\times 9}-\frac{\frac{3\times 5+1}{5}}{\frac{1\times 3+1}{3}}}{-0,9}
Multiply \frac{81}{25} times \frac{7}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{567}{225}-\frac{\frac{3\times 5+1}{5}}{\frac{1\times 3+1}{3}}}{-0,9}
Do the multiplications in the fraction \frac{81\times 7}{25\times 9}.
\frac{\frac{63}{25}-\frac{\frac{3\times 5+1}{5}}{\frac{1\times 3+1}{3}}}{-0,9}
Reduce the fraction \frac{567}{225} to lowest terms by extracting and canceling out 9.
\frac{\frac{63}{25}-\frac{\left(3\times 5+1\right)\times 3}{5\left(1\times 3+1\right)}}{-0,9}
Divide \frac{3\times 5+1}{5} by \frac{1\times 3+1}{3} by multiplying \frac{3\times 5+1}{5} by the reciprocal of \frac{1\times 3+1}{3}.
\frac{\frac{63}{25}-\frac{\left(15+1\right)\times 3}{5\left(1\times 3+1\right)}}{-0,9}
Multiply 3 and 5 to get 15.
\frac{\frac{63}{25}-\frac{16\times 3}{5\left(1\times 3+1\right)}}{-0,9}
Add 15 and 1 to get 16.
\frac{\frac{63}{25}-\frac{48}{5\left(1\times 3+1\right)}}{-0,9}
Multiply 16 and 3 to get 48.
\frac{\frac{63}{25}-\frac{48}{5\left(3+1\right)}}{-0,9}
Multiply 1 and 3 to get 3.
\frac{\frac{63}{25}-\frac{48}{5\times 4}}{-0,9}
Add 3 and 1 to get 4.
\frac{\frac{63}{25}-\frac{48}{20}}{-0,9}
Multiply 5 and 4 to get 20.
\frac{\frac{63}{25}-\frac{12}{5}}{-0,9}
Reduce the fraction \frac{48}{20} to lowest terms by extracting and canceling out 4.
\frac{\frac{63}{25}-\frac{60}{25}}{-0,9}
Least common multiple of 25 and 5 is 25. Convert \frac{63}{25} and \frac{12}{5} to fractions with denominator 25.
\frac{\frac{63-60}{25}}{-0,9}
Since \frac{63}{25} and \frac{60}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3}{25}}{-0,9}
Subtract 60 from 63 to get 3.
\frac{3}{25\left(-0,9\right)}
Express \frac{\frac{3}{25}}{-0,9} as a single fraction.
\frac{3}{-22,5}
Multiply 25 and -0,9 to get -22,5.
\frac{30}{-225}
Expand \frac{3}{-22,5} by multiplying both numerator and the denominator by 10.
-\frac{2}{15}
Reduce the fraction \frac{30}{-225} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}