Evaluate
\left(4x-y-5\right)\left(2x-y+5\right)
Expand
8x^{2}-6xy+10x+y^{2}-25
Share
Copied to clipboard
9x^{2}-6xy+y^{2}-\left(x-5\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-y\right)^{2}.
9x^{2}-6xy+y^{2}-\left(x^{2}-10x+25\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
9x^{2}-6xy+y^{2}-x^{2}+10x-25
To find the opposite of x^{2}-10x+25, find the opposite of each term.
8x^{2}-6xy+y^{2}+10x-25
Combine 9x^{2} and -x^{2} to get 8x^{2}.
9x^{2}-6xy+y^{2}-\left(x-5\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-y\right)^{2}.
9x^{2}-6xy+y^{2}-\left(x^{2}-10x+25\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
9x^{2}-6xy+y^{2}-x^{2}+10x-25
To find the opposite of x^{2}-10x+25, find the opposite of each term.
8x^{2}-6xy+y^{2}+10x-25
Combine 9x^{2} and -x^{2} to get 8x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}