Solve for x
x=\left(-\frac{9}{74}+\frac{17}{74}i\right)y+\left(\frac{34}{37}+\frac{18}{37}i\right)
Solve for y
y=\left(-\frac{9}{5}-\frac{17}{5}i\right)x+4i
Share
Copied to clipboard
\left(6+3i\right)x+\left(1-2i\right)+\left(x-iy\right)\left(1+2i\right)=5+6i
Use the distributive property to multiply 3x-i by 2+i.
\left(6+3i\right)x+\left(x-iy\right)\left(1+2i\right)=5+6i-\left(1-2i\right)
Subtract 1-2i from both sides.
\left(6+3i\right)x+\left(x-iy\right)\left(1+2i\right)=4+8i
Subtract 1-2i from 5+6i to get 4+8i.
\left(6+3i\right)x+\left(1+2i\right)x+\left(2-i\right)y=4+8i
Use the distributive property to multiply x-iy by 1+2i.
\left(7+5i\right)x+\left(2-i\right)y=4+8i
Combine \left(6+3i\right)x and \left(1+2i\right)x to get \left(7+5i\right)x.
\left(7+5i\right)x=4+8i-\left(2-i\right)y
Subtract \left(2-i\right)y from both sides.
\left(7+5i\right)x=\left(-2+i\right)y+\left(4+8i\right)
The equation is in standard form.
\frac{\left(7+5i\right)x}{7+5i}=\frac{\left(-2+i\right)y+\left(4+8i\right)}{7+5i}
Divide both sides by 7+5i.
x=\frac{\left(-2+i\right)y+\left(4+8i\right)}{7+5i}
Dividing by 7+5i undoes the multiplication by 7+5i.
x=\left(-\frac{9}{74}+\frac{17}{74}i\right)y+\left(\frac{34}{37}+\frac{18}{37}i\right)
Divide 4+8i+\left(-2+i\right)y by 7+5i.
\left(6+3i\right)x+\left(1-2i\right)+\left(x-iy\right)\left(1+2i\right)=5+6i
Use the distributive property to multiply 3x-i by 2+i.
1-2i+\left(x-iy\right)\left(1+2i\right)=5+6i-\left(6+3i\right)x
Subtract \left(6+3i\right)x from both sides.
\left(x-iy\right)\left(1+2i\right)=5+6i-\left(6+3i\right)x-\left(1-2i\right)
Subtract 1-2i from both sides.
\left(1+2i\right)x+\left(2-i\right)y=5+6i-\left(6+3i\right)x-\left(1-2i\right)
Use the distributive property to multiply x-iy by 1+2i.
\left(1+2i\right)x+\left(2-i\right)y=5+6i+\left(-6-3i\right)x-\left(1-2i\right)
Multiply -1 and 6+3i to get -6-3i.
\left(1+2i\right)x+\left(2-i\right)y=5+6i+\left(-6-3i\right)x+\left(-1+2i\right)
Multiply -1 and 1-2i to get -1+2i.
\left(1+2i\right)x+\left(2-i\right)y=\left(-6-3i\right)x+4+8i
Do the additions in 5+6i+\left(-1+2i\right).
\left(2-i\right)y=\left(-6-3i\right)x+4+8i-\left(1+2i\right)x
Subtract \left(1+2i\right)x from both sides.
\left(2-i\right)y=\left(-7-5i\right)x+4+8i
Combine \left(-6-3i\right)x and \left(-1-2i\right)x to get \left(-7-5i\right)x.
\left(2-i\right)y=\left(-7-5i\right)x+\left(4+8i\right)
The equation is in standard form.
\frac{\left(2-i\right)y}{2-i}=\frac{\left(-7-5i\right)x+\left(4+8i\right)}{2-i}
Divide both sides by 2-i.
y=\frac{\left(-7-5i\right)x+\left(4+8i\right)}{2-i}
Dividing by 2-i undoes the multiplication by 2-i.
y=\left(-\frac{9}{5}-\frac{17}{5}i\right)x+4i
Divide \left(-7-5i\right)x+\left(4+8i\right) by 2-i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}