Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

\left(6+3i\right)x+\left(1-2i\right)+\left(x-iy\right)\left(1+2i\right)=5+6i
Use the distributive property to multiply 3x-i by 2+i.
\left(6+3i\right)x+\left(x-iy\right)\left(1+2i\right)=5+6i-\left(1-2i\right)
Subtract 1-2i from both sides.
\left(6+3i\right)x+\left(x-iy\right)\left(1+2i\right)=4+8i
Subtract 1-2i from 5+6i to get 4+8i.
\left(6+3i\right)x+\left(1+2i\right)x+\left(2-i\right)y=4+8i
Use the distributive property to multiply x-iy by 1+2i.
\left(7+5i\right)x+\left(2-i\right)y=4+8i
Combine \left(6+3i\right)x and \left(1+2i\right)x to get \left(7+5i\right)x.
\left(7+5i\right)x=4+8i-\left(2-i\right)y
Subtract \left(2-i\right)y from both sides.
\left(7+5i\right)x=\left(-2+i\right)y+\left(4+8i\right)
The equation is in standard form.
\frac{\left(7+5i\right)x}{7+5i}=\frac{\left(-2+i\right)y+\left(4+8i\right)}{7+5i}
Divide both sides by 7+5i.
x=\frac{\left(-2+i\right)y+\left(4+8i\right)}{7+5i}
Dividing by 7+5i undoes the multiplication by 7+5i.
x=\left(-\frac{9}{74}+\frac{17}{74}i\right)y+\left(\frac{34}{37}+\frac{18}{37}i\right)
Divide 4+8i+\left(-2+i\right)y by 7+5i.
\left(6+3i\right)x+\left(1-2i\right)+\left(x-iy\right)\left(1+2i\right)=5+6i
Use the distributive property to multiply 3x-i by 2+i.
1-2i+\left(x-iy\right)\left(1+2i\right)=5+6i-\left(6+3i\right)x
Subtract \left(6+3i\right)x from both sides.
\left(x-iy\right)\left(1+2i\right)=5+6i-\left(6+3i\right)x-\left(1-2i\right)
Subtract 1-2i from both sides.
\left(1+2i\right)x+\left(2-i\right)y=5+6i-\left(6+3i\right)x-\left(1-2i\right)
Use the distributive property to multiply x-iy by 1+2i.
\left(1+2i\right)x+\left(2-i\right)y=5+6i+\left(-6-3i\right)x-\left(1-2i\right)
Multiply -1 and 6+3i to get -6-3i.
\left(1+2i\right)x+\left(2-i\right)y=5+6i+\left(-6-3i\right)x+\left(-1+2i\right)
Multiply -1 and 1-2i to get -1+2i.
\left(1+2i\right)x+\left(2-i\right)y=\left(-6-3i\right)x+4+8i
Do the additions in 5+6i+\left(-1+2i\right).
\left(2-i\right)y=\left(-6-3i\right)x+4+8i-\left(1+2i\right)x
Subtract \left(1+2i\right)x from both sides.
\left(2-i\right)y=\left(-7-5i\right)x+4+8i
Combine \left(-6-3i\right)x and \left(-1-2i\right)x to get \left(-7-5i\right)x.
\left(2-i\right)y=\left(-7-5i\right)x+\left(4+8i\right)
The equation is in standard form.
\frac{\left(2-i\right)y}{2-i}=\frac{\left(-7-5i\right)x+\left(4+8i\right)}{2-i}
Divide both sides by 2-i.
y=\frac{\left(-7-5i\right)x+\left(4+8i\right)}{2-i}
Dividing by 2-i undoes the multiplication by 2-i.
y=\left(-\frac{9}{5}-\frac{17}{5}i\right)x+4i
Divide \left(-7-5i\right)x+\left(4+8i\right) by 2-i.