Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-9x=5670
Use the distributive property to multiply 3x-9 by x.
3x^{2}-9x-5670=0
Subtract 5670 from both sides.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\left(-5670\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -9 for b, and -5670 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 3\left(-5670\right)}}{2\times 3}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-12\left(-5670\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-9\right)±\sqrt{81+68040}}{2\times 3}
Multiply -12 times -5670.
x=\frac{-\left(-9\right)±\sqrt{68121}}{2\times 3}
Add 81 to 68040.
x=\frac{-\left(-9\right)±261}{2\times 3}
Take the square root of 68121.
x=\frac{9±261}{2\times 3}
The opposite of -9 is 9.
x=\frac{9±261}{6}
Multiply 2 times 3.
x=\frac{270}{6}
Now solve the equation x=\frac{9±261}{6} when ± is plus. Add 9 to 261.
x=45
Divide 270 by 6.
x=-\frac{252}{6}
Now solve the equation x=\frac{9±261}{6} when ± is minus. Subtract 261 from 9.
x=-42
Divide -252 by 6.
x=45 x=-42
The equation is now solved.
3x^{2}-9x=5670
Use the distributive property to multiply 3x-9 by x.
\frac{3x^{2}-9x}{3}=\frac{5670}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{9}{3}\right)x=\frac{5670}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-3x=\frac{5670}{3}
Divide -9 by 3.
x^{2}-3x=1890
Divide 5670 by 3.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=1890+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=1890+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{7569}{4}
Add 1890 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{7569}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{7569}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{87}{2} x-\frac{3}{2}=-\frac{87}{2}
Simplify.
x=45 x=-42
Add \frac{3}{2} to both sides of the equation.