Solve for x
x=34
x=26
Graph
Share
Copied to clipboard
3x^{2}-3x-1950=\left(2x-9\right)\left(3x-78\right)
Use the distributive property to multiply 3x-78 by x+25 and combine like terms.
3x^{2}-3x-1950=6x^{2}-183x+702
Use the distributive property to multiply 2x-9 by 3x-78 and combine like terms.
3x^{2}-3x-1950-6x^{2}=-183x+702
Subtract 6x^{2} from both sides.
-3x^{2}-3x-1950=-183x+702
Combine 3x^{2} and -6x^{2} to get -3x^{2}.
-3x^{2}-3x-1950+183x=702
Add 183x to both sides.
-3x^{2}+180x-1950=702
Combine -3x and 183x to get 180x.
-3x^{2}+180x-1950-702=0
Subtract 702 from both sides.
-3x^{2}+180x-2652=0
Subtract 702 from -1950 to get -2652.
x=\frac{-180±\sqrt{180^{2}-4\left(-3\right)\left(-2652\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 180 for b, and -2652 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-180±\sqrt{32400-4\left(-3\right)\left(-2652\right)}}{2\left(-3\right)}
Square 180.
x=\frac{-180±\sqrt{32400+12\left(-2652\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-180±\sqrt{32400-31824}}{2\left(-3\right)}
Multiply 12 times -2652.
x=\frac{-180±\sqrt{576}}{2\left(-3\right)}
Add 32400 to -31824.
x=\frac{-180±24}{2\left(-3\right)}
Take the square root of 576.
x=\frac{-180±24}{-6}
Multiply 2 times -3.
x=-\frac{156}{-6}
Now solve the equation x=\frac{-180±24}{-6} when ± is plus. Add -180 to 24.
x=26
Divide -156 by -6.
x=-\frac{204}{-6}
Now solve the equation x=\frac{-180±24}{-6} when ± is minus. Subtract 24 from -180.
x=34
Divide -204 by -6.
x=26 x=34
The equation is now solved.
3x^{2}-3x-1950=\left(2x-9\right)\left(3x-78\right)
Use the distributive property to multiply 3x-78 by x+25 and combine like terms.
3x^{2}-3x-1950=6x^{2}-183x+702
Use the distributive property to multiply 2x-9 by 3x-78 and combine like terms.
3x^{2}-3x-1950-6x^{2}=-183x+702
Subtract 6x^{2} from both sides.
-3x^{2}-3x-1950=-183x+702
Combine 3x^{2} and -6x^{2} to get -3x^{2}.
-3x^{2}-3x-1950+183x=702
Add 183x to both sides.
-3x^{2}+180x-1950=702
Combine -3x and 183x to get 180x.
-3x^{2}+180x=702+1950
Add 1950 to both sides.
-3x^{2}+180x=2652
Add 702 and 1950 to get 2652.
\frac{-3x^{2}+180x}{-3}=\frac{2652}{-3}
Divide both sides by -3.
x^{2}+\frac{180}{-3}x=\frac{2652}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-60x=\frac{2652}{-3}
Divide 180 by -3.
x^{2}-60x=-884
Divide 2652 by -3.
x^{2}-60x+\left(-30\right)^{2}=-884+\left(-30\right)^{2}
Divide -60, the coefficient of the x term, by 2 to get -30. Then add the square of -30 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-60x+900=-884+900
Square -30.
x^{2}-60x+900=16
Add -884 to 900.
\left(x-30\right)^{2}=16
Factor x^{2}-60x+900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-30\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-30=4 x-30=-4
Simplify.
x=34 x=26
Add 30 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}