Evaluate
50-42x
Expand
50-42x
Graph
Share
Copied to clipboard
9x^{2}-42x+49-\left(3x+1\right)\left(3x-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-7\right)^{2}.
9x^{2}-42x+49-\left(\left(3x\right)^{2}-1\right)
Consider \left(3x+1\right)\left(3x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
9x^{2}-42x+49-\left(3^{2}x^{2}-1\right)
Expand \left(3x\right)^{2}.
9x^{2}-42x+49-\left(9x^{2}-1\right)
Calculate 3 to the power of 2 and get 9.
9x^{2}-42x+49-9x^{2}+1
To find the opposite of 9x^{2}-1, find the opposite of each term.
-42x+49+1
Combine 9x^{2} and -9x^{2} to get 0.
-42x+50
Add 49 and 1 to get 50.
9x^{2}-42x+49-\left(3x+1\right)\left(3x-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-7\right)^{2}.
9x^{2}-42x+49-\left(\left(3x\right)^{2}-1\right)
Consider \left(3x+1\right)\left(3x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
9x^{2}-42x+49-\left(3^{2}x^{2}-1\right)
Expand \left(3x\right)^{2}.
9x^{2}-42x+49-\left(9x^{2}-1\right)
Calculate 3 to the power of 2 and get 9.
9x^{2}-42x+49-9x^{2}+1
To find the opposite of 9x^{2}-1, find the opposite of each term.
-42x+49+1
Combine 9x^{2} and -9x^{2} to get 0.
-42x+50
Add 49 and 1 to get 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}